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Abstract

This paper studies a novel game-theoretic setting: players may acquire new ac-

tions over time by observing the opponent’s play. We model this scenario as finitely

repeated games where players’ action sets are private information and may endoge-

nously expand over time. Three main implications emerge from this framework

and its equilibria. First, players may target a payoff vector for the long run and

voluntarily “teach” one another the actions needed in early periods. The action

profile will be learned and sustained as long as each action is available to either

player. Second, when no payoff target is prefixed, the players can always obtain

or approximate strict ex-post efficiency via bilateral teaching and learning. Third,

an alternative economic argument now exists for seemingly irrational cooperative

behavior in games with finite horizon. For instance, fully rational players can play

a cooperative equilibrium even if the stage game remains a Prisoner’s Dilemma for

everyone.
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1 Introduction

The ability to observe and learn new skills and ideas is not only a human instinct, but

also an important feature in various strategic scenarios. Consider, for instance, competing

cellphone manufacturers who frequently bring forward “next-generation” models. Novel

designs and functions that prove to be popular among consumers are often adopted

by competitors in no time; examples include dual or triple camera, 3D Touch in user

interaction, removal of headphone jack, and even the suffixes Pro, Max and Note in

the model names. Similar phenomena prevail in other strategic environments such as

financial markets and advertising, where participants may start with different sets of

available strategies (on assembling hedge portfolios, creating brand images, etc.) but

are capable of acquiring new techniques over time via observation. Conversely, a skilled

participant may take this into account when contemplating strategies: they propagate

certain techniques hoping for beneficial spillover effect, while conceal other abilities to

prevent vicious competition.

The meaning of “learning” in these scenarios differs from that in most existing litera-

ture in two aspects. First, incomplete information exists not in payoffs but in availability

of actions. For instance, before a chess tournament, an average contestant is typically

aware of the existence of some secret tactic which entails her sure loss, but she remains

uncertain about whether the opponent is capable of it. Similarly, a trader with no insider

information still anticipates serious losses if a competitor practices malicious insider trad-

ing. Second and consequently, what a player may learn from her opponent is the means

of executing certain actions, such as how to reach a Queen’s Gambit or where to pry out

information leaks, instead of their existence or the associated payoffs.

In game-theoretic language, the above examples call for a novel alternative setting

in defining a game: instead of fixing every player’s set of available actions from the be-

ginning, or prescribing an exogenous rule for how it evolves, we may allow endogenous

acquisition of available actions which makes the expansion of a player’s action set an

equilibrium outcome. Multiple incentive issues thus arise in this context. For instance,

as emergence and acquisition of new actions are not automatic, it is worth investigating

what type of action can be taught and learned in equilibrium, and under what qualifi-

cation. Moreover, in many applications a player’s action set is private information by

nature. This uncertainty may promote mutually beneficial cooperation in gameplay when

a player is unsure about what severe punishment her opponent is capable of, but may also

obstruct cooperation since failure to play some action may result from either deviation or

incapability. Finally, in terms of players’ welfare, the set of sustainable payoffs requires

careful characterization.

In this paper, we model endogenous acquisition of actions as a mechanism to enlarge

players’ action sets in repeated games with finite horizon. A player learns new actions
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when she observes them from her opponent’s gameplay. Our results convey a positive

message on cooperative “teaching and learning” behavior: on the one hand, as long as

an individually rational payoff vector is feasible, in the sense that the actions required

for achieving it can be played by either player, it can emerge as a long-term equilibrium

outcome. On the other hand, even if the players do not have a prefixed payoff target, they

can always arrive at ex post efficiency in equilibrium. Interestingly, both results hinge

on the existence of a destructive action that no player is certainly capable of initially.

Apart from providing a framework to analyze the acquisition of new actions, this paper

also contributes to the repeated-games literature by suggesting a novel mechanism to

sustain cooperation under finite repetition, even with the stage game being a Prisoner’s

Dilemma, among fully rational agents with consistent payoff functions.

Our model considers two players playing a stage game repeatedly for finitely many

periods. The initially available set of actions of each player is private information while

the players have some common prior on the distribution of this set. The main digression of

our setting from standard repeated games is that a player can learn new actions through

observation. For example, suppose that a player is not able to play some action a1

initially, but saw her opponent playing it in period 1. Then the player will be able to use

a1 starting from period 2. Therefore the term “learning” for a player in this paper should

be understood as acquiring actions that she was unable to play before, which differs

from most theoretical literature that interprets “learning” as updating information (e.g.

Chassang (2010)) or maintaining the current action set (e.g. Joosten et al. (1995)).

In this sense, the players are not strictly playing “repeated games”, but a sequence of

games where the action sets are monotonically expanding. The path of such expansion

is endogenous.

To understand the difference made by enabling players to learn new actions, consider

the following simple example. Suppose that a dominant action called aD exists in the

stage game but whether either player is able to play it is private information ex ante.

If learning is infeasible, standard backward induction implies that a player capable of

aD will play it throughout the finitely repeated games, making cooperation impossible.

However, if actions can be learned, whether to play aD before the final period involves

opposing incentives when outcome (aD, aD) is undesirable (as in a Prisoner’s Dilemma).

A player capable of aD may be reluctant to play it, when she believes that the opponent

will not, at the cost of leaving the subsequent games with (aD, aD) each period; at the

same time, she would be less reluctant if she believes that the opponent will play aD

with a significant probability. Thus the uncertain existence of aD creates a plausible

reward-and-punishment scheme for cooperation, namely to have each player refrain from

aD until the last period on path but start playing aD immediately off path.

Utilizing this observation, our first result, Theorem 1, characterizes the set of sustain-
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able long-term payoffs, assuming the possible existence of an action aD as above1. We

find a payoff vector can serve as long-term average payoffs in equilibrium as long as it

is individually rational and ex post feasible. The notion of feasibility becomes broader

under acquisition of actions: for instance, suppose that some payoff vector requires player

1 to play a1 and player 2 to play a2. It is still feasible even if initially player 2 cannot play

either action but player 1 can play both, because 2 could acquire a2 from 1’s gameplay.

We construct a three-phase equilibrium for this result. In Phase I, players voluntarily

reveal whether they can play the actions needed to achieve the target payoff vector, and

thus make its feasibility (or infeasibility) common knowledge. In Phase II, they cooper-

ate on sustaining the target payoffs if feasible. Phase III contains the above mentioned

reward-and-punishment scheme: players start playing aD early, if capable, if and only if

prior deviation has been observed.

The downside of an equilibrium with fixed target payoffs is that players fail to coop-

erate when the target payoffs are actually infeasible. Our next result, Theorem 2, shows

that in another type of equilibria, players need not prefix target payoffs but can always

achieve ex-post efficiency. In such an equilibrium which also consists of three phases,

Phase I now allows time for “trial and error” in order to establish common knowledge

of what action profile is efficient among the feasible ones. In particular, the players will

first try to achieve the action profile with the highest total payoff by playing out relevant

actions, then if it turns out to be infeasible, they turn to the one with the second highest

total payoff, and so on. Phases II and III are similar to before. This result also implies

that construction of a cooperative equilibrium in our framework is straightforward yet

robust: only strategies in Phase I need to be prescribed differently according to the nature

of desired cooperation, while the subsequent phases require little alteration.

We have also considered a number of model variations and discussed how they may

affect the main results. Interestingly, we find that when learning an action is probabilistic,

i.e. observing an action once results in successful acquisition with probability µ ∈ (0, 1),

an equilibrium may not exist given every µ close to 1 when the repeated games last

for a sufficiently long time. This irregularity reveals contradicting incentives on some

particular path of possibly off-equilibrium gameplay. Nevertheless, once the length of

repetition becomes given while µ is set sufficiently close to 1, existence of equilibrium is

restored.

Related literature. Our result proves the sustainability of mutually beneficial “teach-

ing and learning” of actions, as well as subsequent long-term cooperation, under a frame-

work with full rationality and consistent payoff matrices, which stands in stark contrast

to the theoretical literature on finitely repeated games. The idea of equilibrium con-

1The dominance of aD is not an essential assumption, but leads to the sharpest contrast with existing
literature. See Section 3 for more discussion.
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struction has common ground with Benoit and Krishna (1985) in the sense that reward

or punishment after every possible history must survive sequential rationality with fi-

nite horizon; however, we do not require actual existence of multiple stage equilibria, as

excluded by the dominance of action aD. Another representative method in supporting

cooperation in finitely repeated games is to introduce incomplete information on players’

rationality, namely with a small probability a player faces a “crazy” opponent who adopts

a predetermined strategy (e.g. Kreps et al. (1982), Fudenberg and Maskin (1986), Kreps

and Wilson (1982), Milgrom and Roberts (1982)). A more recent paper by Weinstein

and Yildiz (2016) also explains cooperation in finitely repeated Prisoner’s Dilemma be-

tween fully rational players, by proving the existence of a set of stage game payoffs that

rationalize the designated behavior of a “crazy” type (referred to as a “commitment”

type in the paper). However, their model requires a considerable variation of the stage-

game payoffs between different types, which means that the players are sometimes not

playing Prisoner’s Dilemma as cooperation is not dominated for a “crazy” player. Our

theory with acquisition of actions, however, enforces cooperation even when the stage

game always remains a Prisoner’s Dilemma.

Apart from embedding the acquisition of actions in repeated games, our model can also

be viewed as a variation of stochastic games (Dutta (1995), Fudenberg and Yamamoto

(2011), Marlats (2015)), where the state is the actual game played and player can alter

the state by playing some action the opponent was incapable of. The main difference

between our framework and a typical stochastic game is two-fold. First, whether and

how the state may transit from one to the other is determined by the players’ types, and

transition is irreversible. Second, in generic cases the state will be hidden throughout

in equilibrium, and it is this incomplete information that enables cooperation even on a

finite horizon.

Our theory also identifies an environment where finitely and infinitely repeated games

produce similar cooperative equilibria. By adding our constructed play (Phase III) at the

end of sufficiently long finitely repeated games, every long-run average payoff vector that

is feasible in infinitely repeated games can be approximated in a finitely repeated version.

This observation also brings forward the general question of whether an environment with

learning of actions may produce new insights for other topics in finitely repeated games,

such as monitoring (Mailath et al. (2002), Bhaskar and van Damme (2002), Miyahara

and Sekiguchi (2013)) and evolution (Nachbar (1992), Cressman (1996)), and relates to

applications of infinitely repeated games, such as market segmentation and collusion (Bos

and Marini (2022)).

There is a large literature of behavioral and experimental economics in finitely re-

peated games, where the term “learning” is often mentioned but with different meanings

from ours. In general, learning is usually related to the issue of bounded rationality in

these works, and refers to identifying the opponent’s possible non-equilibrium behavior
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(Andreoni and Miller (1993), Mookherjee and Sopher (1994), Nagel (1995)), exploring

superior ways to organize the same set of actions over time (Andreoni (1988), Crawford

and Haller (1990), Camerer et al. (2002), Muller et al. (2008)), or changes in preferences

induced by payment schemes (Chandrasekhar and Xandri (2023)). The experimental re-

sults vary for repeated Prisoner’s Dilemma: some find the beginning of defection to occur

earlier with experience (e.g. Selten and Stoecker (1986)) while others provide evidence

that more experienced players cooperate for longer (e.g. Andreoni and Miller (1993)).

Our model relates to the second interpretation above in that learning is essentially a

way of expanding a player’s payoff space, while we provide a theoretical justification for

cooperation in a framework with full rationality.

Organization. The rest of the paper is organized as follows. Section 2 presents an

illustrative example of our framework and main results. Section 3 introduces the model.

Section 4 presents the results and discusses their robustness to model variations. Section

5 concludes. All proofs are in the appendices.

2 Illustrative Example

Consider the following stage game, played for a total of 4 periods. The whole history of

action played is publicly observable.

a1 a2 aD

a1 0, 0 2,−0.5 −10, 0.1

a2 −0.5, 2 1, 1 −20, 3

aD 0.1,−10 3,−20 −9,−9

Different from the usual repeated games, which action(s) are available to each player

is private information. Suppose it is common knowledge that for each player ex ante,

(1) a1 is always available, (2) a2 is available with probability 0.1, and (3) aD is available

with probability 0.6. If the available actions remain fixed regardless of the gameplay, the

stage game would be a Prisoner’s Dilemma as a1 dominates a2 and aD dominates both

a2 and a1. Thus there is a unique equilibrium which is independent of the prior beliefs:

both players play aD in every period if they can, and play a1 otherwise.

Now suppose that a player can learn a previously unavailable action via observation,

i.e. if the action is played by the opponent in some period, it becomes available to the

player starting from the next period. To demonstrate how this setting works, consider

the particular case where, at the beginning of the game, only a2 and aD are available to

the row player while all actions are available to the column player, as shown in Figure

1. Suppose, for the sake of illustration, that in some equilibrium the row player plays a2

in both periods 1 and 2, while the column player plays a1 in period 1 and aD in period
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2. The availability and knowledge on each action then evolves as in Figures 2 and 3. In

these figures, an action in black means it is available to the corresponding player and the

availability has become common knowledge; an action in blue means it is available to

the corresponding player but the availability is still private knowledge; an action in red

means it is currently unavailable to the corresponding player. In other words, a1 becomes

available to both players, which also becomes common knowledge, after it is played by

the column player in period 1. Meanwhile, as aD has not been played by either player

in period 1, its availability and each player’s belief remains unchanged in period 2. Then

with aD played in period 2, it becomes common knowledge in period 3 that all actions

are available to each player.

Figure 1: Period 1 Figure 2: Period 2,
after (a2, a1) in period 1

Figure 3: Period 3,
after (a2, aD) in period 2

Next, we propose below a particular equilibrium candidate of the 4-period repeated

games. We leave it to interested readers to verify, by straightforward calculation, that

this strategy profile indeed constitutes an equilibrium.

Period 1. Play a2 if possible, and a1 otherwise.

Period 2. If only a2 or a1 was played in period 1, play a2 if a2 was played and a1

otherwise. Otherwise, i.e. if aD was played in period 1, play aD.

Period 3. If either player played a2 in period 1, but some player did not play a2

in period 2, play aD if possible and a1 otherwise. Otherwise, play a1 if aD has not

been played, and aD if it has been played before.

Period 4. Play aD if possible. Otherwise play a1.

In this strategy profile, players do not only refrain from playing the dominant strategy

aD earlier even if they can, but also manage to “teach” one another to cooperate from the

beginning. Three economic forces enable it to be an equilibrium candidate. First, each

agent is willing to play a2 in period 1 if she can, because if the opponent can only play

a1, they will lose the opportunity of profitable coorperation in period 2. Second, once

cooperation is enabled by some player playing a2 in period 1, no agent wants to deviate

in period 2 in fear of facing aD as punishment in period 3. Finally, even an aD-player
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will not actually play aD until the last period, because doing so earlier will trigger the

undesirable outcome (aD, aD) in the subsequent games.

Note that both players are fully rational, thus the mechanism for sustaining cooper-

ation stands in contrast to renowned prior works such as Kreps et al. (1982) and Fuden-

berg and Maskin (1986), which induce cooperation by assuming a positive probability of

a player being irrational and playing a predetermined strategy, such as Tit-for-Tat. It

is also different from Weinstein and Yildiz (2016) in not requiring variation of the game

nature for different types of player, as the stage game remains a Prisoner’s Dilemma ex

post regardless of the players’ available actions.

The example suggests further and more general implications. On the one hand, a

stage game with more possible actions raises the question of how much can be taught.

For players to achieve a payoff vector via teaching potential actions to one another,

and to sustain cooperation in the subsequent periods, the design of an equilibrium goes

beyond the standard Folk Theorem. Since players in our framework can always hide

any potential action without fearing off-path punishment, incentivizing them to play

designated potential actions can only be achieved through on-path strategy specification.

On the other hand, although the initial beliefs need to satisfy certain conditions for

desirable teaching to exist in equilibrium, longer repetition relaxes these conditions by

increasing the opportunity cost of deviating players. In the subsequent sections, we

formalize these implications by investigating a general stage game with arbitrary length

of finite repetition.

3 Model

Players and actions. Consider two players 1 and 2, who play a simultaneous stage

game G repeatedly for T ∈ N+ periods. Each player has a set of finite possibly available

actions, denoted by Ā := {a1, · · · , an}.
Not all actions in Ā are available to a player from the beginning; instead, what actions

a player can choose initially follows a commonly-known probability distribution. For an

arbitrary action a, we will use the phrase “player i can/is able to play a” for the event

that i’s set of available actions contains a. Let Ai, i = 1, 2 denote the set of actual

available actions for player i, and assume that for some m < n, ∀k ∈ {1, 2, ...,m}, the

probability Prob(ak ∈ Ai) := λk = 1 for i = 1, 2. That is, the two players can both play

a1, · · · , am initially. We call them endowed actions and denote their collection by Ae. For

every k ∈ {m + 1,m + 2, ..., n}, Prob(ak ∈ Ai) := λk ∈ [0, 1) for i = 1, 2. These actions

are called a player’s potential actions, and we denote their collection by Ap. We assume

that these probabilities are independent across actions and players.

8



Learning through observation. We allow mixed or correlated actions and assume

that the mixing proportions are observable. We digress from the classical literature in

repeated games in assuming that players can acquire new actions from past experience:

once player i has observed some action a ∈ Ā played by her opponent in period t, either

in pure or mixed actions, she can play a if she has not been able to before.2

We can thus also use Ai to define a player’s type. Note that in the context of learning

actions via observation, Ai may vary according to past gameplay. Let Γ := {Ai ⊂ Ā :

Ai ⊃ Ae} be the set of all possible types.

Payoffs. The players’ payoffs in G is given by g : Ā × Ā → R2 where the first and the

second arguments in the domain represent player 1’s and 2’s actions, and those in the

range represent 1’s and 2’s payoffs respectively. A player’s total payoff from the repeated

games is the sum of her stage game payoffs. We assume no discounting. A player’s

average payoff from the repeated games is then her total payoff divided by T . When T is

large, the average payoff in equilibrium measures a player’s long-term sustainable payoff.

To highlight the difference made in equilibrium behavior by enabling acquisition of

actions, we assume that one of the potential actions, say an without loss of generality, is a

dominant action in Ā. We denote it in particular as aD. Let A denote the set of possibly

available actions except aD. We shall call a player who can play aD an “aD-player” for

expositional convenience. Clearly, the existence of a dominant action makes it impossible

for an aD-player to cooperate in a standard finitely-repeated-games framework.

Histories and belief updating. Let ht, t = 0, 1, 2, · · · , T − 1, be a history of action

played by period t in the repeated games with h0 = ∅. Let H be the set of possible

histories. The history of play is public knowledge to both players in every period. Hence,

a player’s strategy si(·, ·) is a mapping from H× Γ to ∆(Ā).

Define λ̃ki : H → [0, 1] to be player i’s belief updating rule: given history ht−1, λ̃ki gives

i’s believed probability that her opponent can play ak (this formulation includes k = D,

with a slight abuse of notation). Clearly, the belief updating process satisfies initial

conditions λ̃ki (∅) = λk ∀k. We assume that players follow the Bayes’ rule in updating

information.

Equilibrium. We use the perfect Bayesian equilibrium (PBE, or simply equilibrium,

in the subsequent text) as the solution concept, and denote a PBE as σ∗ = {s∗i , λ̃∗i }i=1,2,

where λ̃∗i := {λ̃k∗i }nk=1 is a series of belief updating rule.

It is clear that in every PBE, a player whose available actions include aD by the last

period will always play aD in the last period. Also, if aD is played once in some period, the

2In this setting, a player may learn multiple actions in a single period from the opponent’s mixed
action. We assume this for simplicity of exposition; our main results are unchanged under the alternative
configuration where only one action per player can realize in every period. See Section 4.3 for a discussion.
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availability of aD to both players becomes common knowledge, and backward induction

yields a unique equilibrium with both players playing aD thereafter. We summarize these

preliminary results as follows.

Proposition 1. In every PBE σ∗:

1. s∗i (hT−1,Ai) = δ(aD) for i = 1, 2 and for all hT−1 and Ai such that aD ∈ Ai,
where δ(·) is the Dirac delta function.

2. s∗i (ht,Ai) = δ(aD) for i = 1, 2 and for all ht such that aD has been played for at

least once.

Specifications on parameters. Now we move on to specify some notations in the

stage game payoffs and actions which will prove convenient in the subsequent analysis.

We list them below. For conciseness of notations and without loss of generality, we assume

that g is symmetric, i.e. g1(a, a′) = g2(a′, a) for all a, a′ ∈ Ā.

1. gmax := maxa,a′∈Ā g1(a, a′). This is the maximum payoff that a player can get

from playing the stage game once.

2. gbr,aD := maxa∈A g1(a, aD). This is the maximum payoff that a player not able

to play aD can get from playing against another player using aD. The subscript br

stands for best response (without aD).

3. gmin := mina,a′∈A g1(a, a′). This is the minimum payoff that a player not able to

play aD can get from playing against another such player in the stage game once.

4. Consider a stage game where λk = 0 ∀k = m + 1, · · · , n − 1 while λD ∈ [0, 1).

That is, it is common knowledge that no player can play a potential action except

aD. By the Oddness Theorem, there exists a symmetric, possibly mixed-strategy

Bayesian Nash equilibrium. We denote the corresponding action played by a player

who cannot play aD as a(λD) ∈ ∆(Ae). We assume that for all λD ∈ [0, 1), this

BNE is also a BNE when λk = 1 ∀k = m + 1, · · · , n − 1, i.e. when all potential

actions except aD are available to both players.3 Without loss of generality, we

normalize the payoffs such that g1(a(0), a(0)) = 0.

3This assumption avoids certain technical details in equilibrium construction with little economics.
We discuss our results’ robustness without it in Section 4.3. As λk < 1 by the definition of potential
actions, the case where λk = 1 ∀k = m+1, · · · , n−1 cannot occur a priori and is only a hypothetical one
for illustrating the assumption. Alternatively, one may think of this case occurring ex interim following
a history where every ak, k = m+ 1, · · · , n− 1, has been played at least once.
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On important modeling choices. We have embedded two critical assumptions in

the framework. First, we model the strategic environment as finitely repeated games and

acquisition of actions as expanding the action set. In most applications such as sports

games, the ability to acquire action is usually only important when newly acquired actions

can be used repeatedly under familiar circumstances in the future. Hence repeated games

provide a time-consistent environment for describing action acquisition and evaluate its

consequences. Second, we assume that when a player is not able to play some action, she

still knows its existence and relevant payoffs. This setting does exclude some interesting

cases with possible total unawareness of certain actions, but keeps our analysis tractable

and still encompasses important and realistic scenarios. For instance, an inexperienced

fund manager may well know the existence of “rat trading” and its impact on the market,

but has to actually observe or hear from an old hand to be able to implement the mal-

practice. As will be clear in the next section, our result readily extends to the scenario

where the players may not know the exact payoffs following unavailable actions, but they

do understand certain important relations between key payoff parameters.4

4 Analysis

In this section, we characterize and discuss long-term sustainable payoffs in the context of

teaching and learning of actions. We begin with determining a range of such equilibrium

payoffs.

4.1 Sustainable Payoffs under Strategic Teaching

Allowing for mixed actions, let V denote the convex hull of the set {g(a, a′) : a, a′ ∈ A},
which is the set of feasible payoff vectors attainable in the stage game without playing the

dominant action aD. Notably, our definition of V is different from the usual definition of

the feasible payoff set, which encompasses payoff vectors from all possible action profiles.

This difference stems from the particular role aD plays in our model. In the repeated

games we consider, as soon as aD is played by some player at some period t, it becomes

available to both players and the mutual availability also becomes common knowledge;

as a result, the consecutive repeated games must unravel in equilibrium as stage play

becomes absorbed in (aD, aD) from t onward. Consequently, for every a ∈ A, action

profile (a, aD) may appear for at most one period on any equilibrium path. Therefore

to discuss long-term sustainable payoffs in the repeated games, in the sense that such

payoffs may be supported by equilibrium actions played for many periods, it is natural

to focus on feasible payoffs that does not require the play of aD.

4See Assumption 1 and related discussions in Section 4.1 for details.
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Let V ∗Nash := V ∩ (R+ ×R+). This set features a plausible lower bound for long-term

average equilibrium payoffs, which is the stage-game BNE payoff between two players

who cannot play aD.5 For every payoff vector (v1, v2) ∈ V ∗Nash, we say that it is feasible

if it may realize from some action profile in ∆(A1 ∪ A2 × A1 ∪ A2). This definition

has a natural meaning: (v1, v2) must result from some action profile, and the minimal

requirement for (v1, v2) to realize in equilibrium is each needed action can be played by

either player initially, so that the players can feasibly teach one another. Note that we

describe achievability on an ex-post basis, i.e. whether (v1, v2) is feasible is not initially

common knowledge if it involves potential actions.

Our first result shows that if a payoff vector dominating the Nash equilibrium payoffs

is feasible, it can be approximated in the long-run if the payoffs from aD against aD,

and from the best response in A against aD, are both undesirable. This qualification is

formally described by the following condition, which we assume throughout this section.

Assumption 1. The following inequalities are satisfied: (a) g1(aD, aD) < min{gmin −
gmax

1−λD ,−
gmax

λD
}; (b) gbr,aD < 1

λD
(g1(aD, aD)− (1− λD)(2gmax − gmin)).

The formal proofs in Appendix A provide a detailed account of how the above two

conditions work in the analysis. Heuristically, condition (a) means that the payoff from

the stage-game dominant-strategy equilibrium (aD, aD) is sufficiently low, while condition

(b) means that the best payoff of a player who cannot play aD facing an opponent who can

is even sufficiently lower. Together they imply that aD, although a dominant action, is

rather destructive to both players once played out: it ensures an undesirable equilibrium

in the remaining periods, and does even greater harm instantly to whichever player not

playing it.

Now we are ready to present the first theorem.

Theorem 1. For i = 1, 2, every ε > 0 and every (v1, v2) ∈ V ∗Nash, there exists an

equilibrium such that, if (v1, v2) is feasible, then player i’s average payoff is within ε of vi

when T is sufficiently large.

Equilibrium construction. We construct a strategy profile as candidate for a coop-

erative equilibrium where agents seek to achieve and sustain (v1, v2). We relegate the

detailed description of strategies to Appendix A, while highlight their key features here

and discuss how they facilitate teaching and cooperation. The equilibrium strategy pro-

file has three phases, and we lay out below the on-path behavior and off-path punishment

in turn.

5As indicated by the classical Folk Theorem, using BNE payoff as a lower bound is technically more
convenient, but the bound can in fact be further reduced; in Appendix B, we present a parallel result that
shows any payoff vector dominating the stage-game minimax payoff can also be sustained in equilibrium.
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Phase I: teaching and learning. The first phase contains periods 1 and 2. In period

1, Player 1 tries her best to teach Player 2 the actions needed for achieving (v1, v2).

Specifically, if she already can play all such actions, she plays an equal mixture of them;6

otherwise, she plays as many of them as possible in another equal mixture. In period 2,

Player 2 considers her potentially enlarged set of available actions, and if she can, plays

an equal mixture of them that is sufficient for achieving (v1, v2). This mixture signals to

Player 1 that profitable cooperation has become possible.

The main incentive issue here is that if achieving (v1, v2) requires some potential action

that is not favorable in the stage game, a player may want to hide it and she can do so

without facing off-path punishment. Thus we differentiate between subsequent on-path

possibilities to incentivize teaching of such actions.

Phase II: cooperation. The meaning of cooperation is path-dependent. If either player

has made it publicly in period 1 or 2, by playing a previously described mixture of actions,

that (v1, v2) is feasible, they cooperate and obtain (v1, v2) every period in this phase. For

instance, suppose that g1(a1, a2) = v1 while g2(a1, a2) = v2, and Player 1 played an equal

mixture of a1 and a2 in period 1; then Player 1 will always play a1 and Player 2 a2 in this

phase. Otherwise, if the achievability of (v1, v2) has not become common knowledge, the

players coordinate on playing (a(0), a(0)), a stage-game Nash equilibrium among actions

excluding aD.

The above strategy resolves the incentive problem in Phase I when Phase II is suffi-

ciently long. Consider Player 1 as an illustration. If she can play actions that achieve

(v1, v2), say a1 and a2, but chooses not to play them out in Phase I, she faces the risk of her

opponent not able to play them both initially, which will lead to the “worse cooperation”

of (a(0), a(0)) (with payoff (0, 0)) instead of the “better cooperation” with payoff (v1, v2)

during Phase II. When Phase II is sufficiently long, the opportunity cost stemming from

the risk will eventually outweigh any one-period loss from playing the mixture of a1 and

a2. However, as can be expected in all finitely repeated games, cooperation cannot last

to the final period, and some off-path punishment is required for cooperation not to fail

midway. These concerns call for a third and final phase.

Phase III: possible punishment with uncertainty. This phase contains a fixed number

(at least 2) of periods up to period T . If the players cooperated successfully, in either

form specified in Phase II, they will play (a(0), a(0)) up to period T − 1. In period T ,

each player play aD if she can, and a(λD) otherwise. However, if any detectable deviation

was spotted in the previous phases, e.g. Player 1 played a mixture of a1 and a2 in period

1 but the players failed to play (a1, a2) in period 3, then they turn to punishment in every

period of Phase III: play aD if they can and a(λD) otherwise.

The purpose of designating such an off-path strategy is to maintain player’s incentives

6The mixture does not have to be equal, but must be commonly agreed upon in equilibrium. See
Appendix A for more details.
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to cooperate in Phase II. Note that once aD is played in any period, the subsequent game

unravels with the unique equilibrium (aD, aD) always. This is detrimental for both players

because g1(aD, aD) is sufficiently small. Since each player has a positive probability ex

ante to be able to play aD, the players are willing to cooperate in Phase II to avoid the risk

of triggering aD prematurely. However when deviation has occurred, an aD-player will

play aD instantly again because of uncertainty about aD’s availability to the opponent:

better to play aD now and trigger the dominant strategy equilibrium, than to refrain

and possibly have payoff gbr,aD which is sufficiently lower than g1(aD, aD) by assumption.

Hence the punishment strategy is also incentive compatible by itself.

It may also be useful to mention a couple of other possible off-path behavior here. For

instance, it is straightforward that no player will play aD earlier if she will already refrain

from it in Phase III. Also, when a player deviates from achieving (v1, v2) in Phase II,

our strategy profile prescribes that they play (a(0), a(0)) for the rest of Phase II, so the

timing of deviation is irrelevant as long as Phase III provides sufficient punishment. See

Appendix A for a complete strategy specification and case-by-case discussion of incentives.

Remarks on Assumption 1. It is worth noting that for Assumption 1 to hold, λD

must be bounded away from zero given the other payoff parameters. This stands in

contrast to the usual assumption in reputation models, where the probability that a

player is of commitment type may be arbitrarily close to zero if the game is repeated for

an arbitrarily long time. Our cooperative equilibrium is built on a significantly positive

λD because, unlike reputation models, punishment of deviation requires the play of aD,

after which the repeated games enter the dominant-strategy equilibrium with unfavorable

payoffs. Should λD be close to zero, a player would lack incentives to punish deviations

with aD and unilaterally induce the undesired equilibrium in subsequent periods, as she

would be faced with only a slight chance of aD from the opponent.

We also briefly discuss here how realistic Assumption 1 is and what happens to equi-

librium behavior if it is violated. First note that the existence of some dominant but

detrimental behavior, i.e. aD in our framework, is prevalent in many economic scenarios.

In a prisoner’s dilemma, it may refer to bribing the judge; in financial markets, insider

trading; in industrial competitions, spying or malicious acquisition if feasible (note that

aD is different from cutthroat competition, since the latter is not likely to be a domi-

nant action of the stage game, and most of the firms know how to conduct cutthroat

competition); in global trade, political and/or military intervention; and so on.

When g1(aD, aD) is not sufficiently low, i.e. the dominant-action equilibrium (aD, aD)

is not very undesirable, an aD-player may find it worthwhile to play aD earlier on equilib-

rium path, thus terminating cooperation. Conversely, when gbr,aD is not sufficiently lower

than g1(aD, aD), i.e. playing some non-aD action against aD is not much worse than

playing aD, an aD-player may decide not to carry out the punishment off equilibrium
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path, in the hope that the opponent may not be able to play aD and the subsequent

games need not unravel into (aD, aD). Therefore the two conditions in Assumption 1

properly bound an aD player’s incentives to play aD, providing discouragement on path

while encouragement off path.

There clearly exist parameter values violating Assumption 1. Respectively in appli-

cations of our framework, cooperation does not necessarily take place in every strategic

scenario. Consider for instance an online game where all players know that bugs (or

similarly, some uninteresting super-early-game rush) exist, but only a fraction of them

know how to carry it out to steal victory. Using bugs means bad experience for every

player, especially to those who could not exploit such bugs themselves; it means that

consistent with our setting, g1(aD, aD) is low and gbr,aD even lower. Now suppose that

the two players join a multi-game series. Only when the bug is very detrimental (i.e.

g1(aD, aD) is sufficiently low) will a player hesitate to use it early (because that teaches

the opponent how to use the bug). Otherwise, it is natural that they take the advantage

right away, which is actually not rare in real gameplay. Similarly, if gbr,aD is not suffi-

ciently low, then there is no sufficient threat against other deviations in the early rounds.

It is also commonly seen in games that an expert deliberately surprises their opponent

and wait for the countermeasure, because they are willing to bear one-period loss (gbr,aD)

for discovering whether the opponent has any secret tactic.

4.2 Ex-Post Efficiency

Theorem 1 has established cooperation for any feasible (v1, v2) that dominates the Nash

equilibrium payoffs, but also exposes the players to the risk of living with the Nash

equilibrium payoffs once (v1, v2) is not feasible ex post. In the next section, we introduce

a result that enables the players to land a payoff vector that is uncertain ex ante but

always efficient ex post.

Fix the players’ initial sets of available actions, A1 and A2. A feasible payoff vector

in ∆(A1 ∪ A2 × A1 ∪ A2) is ex post efficient if it is not Pareto dominated by any other

feasible payoff vector. In this section we focus on a particular such payoff vector which

is also fair in distribution7: given A1,A2, let v(A1 ∪ A2) denote half of the maximized

sum of payoffs from action space ∆(A1 ∪ A2 × A1 ∪ A2). That is, we aim to sustain in

equilibrium not only Pareto efficiency but also strict efficiency, in the sense of maximizing

(and equally distributing) the players’ total payoff.

The following result asserts that, although the players do not know ex ante, i.e. when

they cannot directly observe the opponent’s initially available actions, the largest set

of available actions A1 ∪ A2, they are able to approximate the arguably best possible

7We pick this particular payoff vector simply for selecting a concrete benchmark of efficiency. As can
be seen from the proof, the distribution of payoffs, as long as it guarantees every player a larger payoff
than from (a(0), a(0)), does not affect the results.
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long-term payoffs v(A1 ∪ A2) in equilibrium.

Theorem 2. For i = 1, 2 and every ε > 0, when T is sufficiently large there exists an

equilibrium where player i’s average payoff is always within ε of v(A1 ∪ A2).

To construct an equilibrium for Theorem 2, the key is to motivate players to honestly

teach one another useful actions for the highest possible symmetric payoff, which by defi-

nition cannot be predetermined. For such cooperation to exist and persist in equilibrium,

it is first necessary that no ex post efficient payoff vector requires any player to play aD,

after which the repeated games would simply unravel. This is guaranteed by Assumption

1, which implies that a player’s highest possible payoff against aD is still so low that the

sum of payoffs can never be efficient. (See Appendix A.2 for a detailed argument.)

We thus propose a multi-stage teaching and learning phase from the beginning of the

repeated games (as opposed to a one-stage, 2-period phase in the equilibrium for Theorem

1). Without loss of generality, suppose that ex ante there are L possible maximized total

payoffs, v1, · · · , vL, each corresponding to one or more pure action profiles in one or

more possible configurations of A1 ∪ A2. Assume that v1 > v2 > · · · > vL > 0. In

our constructed equilibrium, the players will establish common knowledge about ex post

efficiency by trial and error.

In period 1, Player 1 examines her set of available actions and see if she can play

all the actions in some action profile that achieves v1

2
for each player. If yes, she picks

an action profile such that an equal mixture of the involved actions brings her the best

payoff8, and plays the mixture. The players can then start cooperating from period 2.

Otherwise, Player 1 plays an equal mixture of as many actions in the union of such action

profiles as she can. In this case, Player 2 in period 2 conducts an analogous evaluation

on her now possibly enlarged set of available actions. That is, if achieving (v
1

2
, v

1

2
) is now

feasible, she “announces” this to Player 1 by playing her best mixture of actions that can

constitute an action profile to achieve (v
1

2
, v

1

2
), and the players start cooperating from

period 3. If not, Player 2 will play another mixture of actions but aiming at achieving
v2

2
for each player. The process goes on by induction for at most L periods, by which

time the players will have common knowledge of which vl, l = 1, · · · , L, to cooperate for.

They then go through a sufficiently long cooperation phase and an ending phase similar

to Phases II and III in Theorem 1, with similar off-path punishment.

The implication of Theorem 2 is two-fold. First, it proposes a different type of co-

operation with learning of actions: although players may not accomplish a prefixed goal

due to uncertainty in action availability, they can always cooperate on the best they

can. While they do not necessarily agree initially, in terms of common knowledge, on

the long-term payoff vector to be sustained, they do agree on each player’s share (1
2
) of

8This best payoff is calculated as against a pre-determined, always available action of Player 2. See
Appendix A.2 for technical details.
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the ultimate sum of long-term payoffs. This grants them incentives to make the pie as

large as possible by playing out actions that help improve the payoff sum during the first

phase of repeated gameplay, which only takes up an arbitrarily small fraction of time as

the length of repetition extends towards infinity. Hence, given the subsequent strategy in

the next phase that both players will coordinate on the total-payoff-maximizing action

profile among those played so far, each player is self-motivated to teach the other as many

useful action as possible, without even requiring a punishment scheme.

Second, we have identified an endgame device – Phase III with credible off-path threat

to play aD – in equilibrium design, as a robust method to prevent the finite repeated game

from cooperation failure. The nature of finite repetition implies necessity of punishment

on off-path behavior near the endgame, and our equilibrium construction for Theorems

1 and 2 shows that an identical punishment scheme can be applied to equilibria with

different early-phase gameplay as well as different targeted long-term payoffs. One may

consider an arbitrary target for cooperation, for instance the second highest possible

payoff from ∆(A1 ∪ A2 × A1 ∪ A2), to be sustained in some equilibrium, and now only

needs to specify the first phase of gameplay where the target action profile emerges. Our

construction of Phases II and III will resolve all other incentive issues.

The role of teaching and learning. To summarize, teaching and learning of actions

have enabled different equilibrium behavior, as compared to standard finitely repeated

games without such a feature, in two aspects. On the one hand, cooperation can be

sustained in finitely repeated games in environments with non-common knowledge of the

players’ action sets, as long as a rather detrimental dominant action exists and can be

learned through gameplay. This action is a dormant threat that will be played voluntarily

and persistently once “activated” in any period by any player, and hence is a credible

deterrence although never played in equilibrium before the endgame. Our theory thus

offers an alternative explanation of cooperative behavior observed in practical scenarios

where teaching and learning are clearly feasible. On the other hand, teaching and learning

play an active role early in the repeated games in expanding the players’ action set, as

long as doing so changes the long-term payoff vector in each player’s favor. Without

common prior of the overall available actions, the players can identify the boundary for

strict efficiency via gameplay and coordinate on staying on the boundary. Their economic

incentives are guaranteed by the long cooperation phase thereafter, which as mentioned

before hinges on effective and self-motivating punishment scheme featuring the dominant

action aD.
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4.3 Discussion

We discuss here some further possible model variations and how they may or may not

affect our results.

Imperfect learning. The first obvious case to examine is for learning of an action

not to be certain and immediate upon the first occurrence of that action. Specifically,

instead of learning with certainty after observing a previously unavailable action once, a

player now learns the action with probability µ ∈ (0, 1) upon each observation, i.e. with

probability 1 − µ the player’s action set remains unchanged. µ = 1 coincides with our

previous setting. In terms of learning, we do not distinguish between observation through

a pure action or a mixed one, i.e. when a previously unavailable action is included in a

mixed action, the probability of learning it via observation is also µ. Also for simplicity

but without loss of generality, we assume here that the only potential action is aD, i.e.

A is a set of endowed actions to both players.

In Appendix B, we prove that when µ is close to 1, there exists no equilibrium when T

gets sufficiently large. This nonexistence result stands in contrast to the general existence

of equilibria in regular finite games with incomplete information. The main underlying

reason is that, when a new action can be learned with high probability once it occurs

even in a mixed action profile, a player’s expected payoff is no longer continuous in her

proportion of mixing actions, which renders the usual fixed-point theorems inapplicable.

However, once we reverse the parametric setting, fixing T and let µ approach 1, existence

of equilibria – in particular, existence of cooperative equilibria as in previous results – is

restored.

Multi-period learning. We can relax the one-period perfect learning in the standard

model in a different way from above: suppose that it takes observation of some action for

y > 1 periods to learn it. As long as y is fixed and finite, this alternative setting makes

little difference in the main results except for slight changes below in equilibrium design.

First, a longer Phase I is needed now for learning to occur. Second, Phase III lasts for

at least y + 1 periods, and more specification is in place for an aD-player in this phase.

On path, an aD player only plays aD for the last y periods. Off path, she starts playing

aD from the beginning of Phase III: if the opponent does not respond by aD, implying

the opponent to be a non-aD-player, she only plays aD for the first y−1 periods of Phase

III and save the last action aD to period T ; otherwise, she always plays aD afterwards.

Non-observation of mixture. Another realistic modification of the model is to take

out the assumption that the probabilities in mixed actions are observable and players

can learn every action by seeing one mixture. Alternatively, assume that only one pure

action will realize for each player per period. In this case, we can apply the idea of
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“block” strategy in classical repeated games to achieve desired patterns of cooperation.

For instance, for a player who is supposed to play an equal mixture of actions a1 and a2

in our standard model, she now plays a1 and a2 each for half of the time in a K-period

block. As long as K can be sufficiently large, which is guaranteed by a sufficiently large

T , we arrive at the same approximation of equilibrium payoffs as before.

Infinite repetition. Our results readily extend to repeated games with infinite horizon.

In fact, the analysis with infinite repetition becomes much easier: there is even no need to

assume a potential dominant action aD, as the endgame effect disappears; a standard Folk

Theorem thus follows. Mutually beneficial teaching and learning can occur in equilibrium,

with the resulting payoffs sustained, as long as the payoffs dominate Nash equilibrium

payoffs (or minimax payoffs) and players are sufficiently patient.

Stage-game BNE in potential actions. Suppose that when some potential action

becomes available to both players, the symmetric action profile a(λD) is no longer a BNE

of the stage game for some λD. An immediate corollary under this configuration is that

our constructed equilibrium still enables players to achieve and sustain feasible (v1, v2),

as long as (v1, v2) dominates every possible stage-game BNE payoff vector. The only

change to equilibrium strategy here is a possibly different stage-game BNE action profile

for punishment, when a deviation has occurred but both player’s ability to play aD has

not yet become common knowledge. When (v1, v2) is dominated by some stage-game

BNE payoff vector, more technical specification is required for equilibrium design, but

we choose not to include it in the current paper as it adds little new economics to the

model.

5 Conclusion

In this paper, we have studied acquisition of actions in the context of finitely repeated

games. Apart from a novel economic force, such acquisition makes a significant difference

in theoretical prediction: mutually beneficial cooperation can be enforced on a finite hori-

zon even when agents are fully rational and payoffs are consistent across different types.

Moreover, the players need not both be capable of the actions needed for cooperation

initially, but will voluntarily teach one another over time.

Our model provides one among many possible configurations for a theory of evolving

game structure via players’ observation of one another’s gameplay. Broadly speaking,

observing opponents’ actions may change the underlying game in various other ways,

including forming more accurate beliefs about its payoff, reducing possible associated

cost, revealing potential subsequent games, etc. We believe that further investigation
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from these perspectives leads to a rich set of potential research directions in game theory

and related fields such as industrial organization.
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A Proofs of Main Results

We first introduce some notations that will be useful for all subsequent proofs.

Let A(v1, v2) denote the set of smallest sets of pure actions that can achieve (v1, v2).

To be precise, for every A ∈ A(v1, v2), A ⊂ A, we have (1) (v1, v2) is feasible from

∆(A× A), and (2) there exists no A′ ( A such that (v1, v2) is feasible from ∆(A′ × A′).
Let Ā = ∪A∈A(v1,v2)A be the largest set of pure actions that can possibly be useful in

achieving (v1, v2). Without loss of generality, we focus on the case where Ā ∩ Ae = ∅.

We use aep(A) to denote the mixed action that places equal probability on each action in

A, and use av(A) to denote an action profile from ∆(A × A) that achieves (v1, v2). Let

Ai,t denote the set of pure actions that have been played by player i before period t; and

let λki,t denote player i’s believed probability, at period t, that her opponent can play ak.

A.1 Proof of Theorem 1

The proof consists of the following two parts.

Part I: We propose the following strategy profile and associated belief

updating rule, denoted as σ
(v1,v2)
Nash , where player i’s average payoff is within ε of

vi when T is sufficiently large.

1. In period 1: if 2A1 ∩ A(v1, v2) 6= ∅, player 1 finds A∗ such that aep(A
∗) is

a best response to a(0) among aep(A), A ∈ 2A1 ∩ A(v1, v2), and plays aep(A
∗); if

2A1 ∩A(v1, v2) = ∅, player 1 plays aep(Ā ∩A1) if Ā ∩A1 6= ∅, and a(0) otherwise.

Player 2 plays a(0).

2. In period t > 1, if either player has played aD before, both players play aD.

Otherwise, follow the strategy described in 3-6.

3. In period 2:

– a. If there was no publicly identified deviation (i.e. a mixture of actions such

that its deviation from σ
(v1,v2)
Nash is common knowledge between the players; same

hereinafter) from 1, then (1) if player 1 played aep(A) for some A ∈ A(v1, v2)

in period 1, the players play av(A); (2) otherwise, then (2a) if 2A2∪A1,2 ∩
A(v1, v2) 6= ∅, player 2 finds A∗ such that aep(A

∗) is a best response to a(0)

among aep(A), A ∈ 2A2∪A1,2 ∩ A(v1, v2), and plays aep(A
∗); (2b) player 2 plays

a(0) otherwise. Player 1 plays a(0).

– b. If there was a deviation from 1 which can be publicly identified (player 1

plays any other action than a(0) and aep(A
′), A′ ⊂ A for some A ∈ A(v1, v2),

or player 2 plays any other action than a(0)), the players play (a(0), a(0)).
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4. Let t∗ ∈ N+ be such that T − t∗ ≥ 1 and is a constant. In period t ∈ {3, · · · , t∗−
1}:

– a. If there was no deviation from 1 − 3, then (1) if player 2 played aep(A)

for some A ∈ A(v1, v2) in period 2 and the players have played only av(A) in

periods 3, · · · , t − 1, the players play av(A); (2) otherwise, the players play

(a(0), a(0)).

– b. If there was a deviation from 1 − 3 which can be publicly identified, the

players play (a(0), a(0)).

5. In period t ∈ {t∗, · · · , T − 1}: if there was no publicly identified deviation from

1−4, and both players have played only av(A) in periods 1, · · · , t∗−1 and (a(0), a(0))

in periods t∗, · · · , t − 1, then play a(0). Otherwise, in period t ∈ {t∗, · · · , T − 1}:
if (λDi,t, λ

D
j,t) = (λD, λD), play aD if i is an aD-player and a(λD) if she is not. If

(λDi,t, λ
D
j,t) = (0, 0), play a(0) regardless of i’s type.

6. In period T : if i is an aD-player, she plays aD. If she is not an aD-player, she

plays a(λD) if (λDi,T , λ
D
j,T ) = (λD, λD), and play a(0) if (λDi,T , λ

D
j,T ) = (0, 0).

7. The belief updating rule λ̃ki,t for k ≥ m+ 1, t > 1, i = 1, 2, is as follows:

– a. If either player has played ak (with positive probability, same hereinafter)

before, λ̃k1,t = λ̃k2,t = 1.

– b. Otherwise, if ak should have been played by player j 6= i with positive

probability according to 1− 5 above, λ̃ki,t = 0.

– c. Otherwise, λ̃ki,t = λk.

To see that σ
(v1,v2)
Nash is well-defined, it is necessary and sufficient to show that according

to σ
(v1,v2)
Nash , (λ̃Di,t, λ̃

D
j,t) can only be (λD, λD), (1, 1) or (0, 0). Clearly, the only way to make

λ̃Di,t or λ̃Dj,t equal to 1 in σ
(a1,a2)
Nash is for some player to play aD with positive probability,

which immediately enables the other player to learn and play aD. Hence, once λ̃Di,t or λ̃Dj,t

becomes 1, the other player’s belief must be 1 as well.

Next, notice that the only way to make λ̃Di,t or λ̃Dj,t equal to 0 in σ
(v1,v2)
Nash is to have

someone play an action other than aD in period t ∈ {t∗, · · · , T − 1}, following a history

that digresses from σ
(v1,v2)
Nash in which no player has played aD. Consider t ∈ {t∗+1, · · · , T}

such that λ̃Di,t−1 = λ while λ̃Di,t = 0. The assumption that λ̃Di,t = 0 implies that neither

player has played aD in period t − 1 ∈ {t∗, · · · , T − 1}, which means that λ̃Dj,t must be

0. Hence, once λ̃Di,t or λ̃Dj,t becomes 0, the other player’s belief must be 0 as well. It then

follows that if λ̃Di,t or λ̃Dj,t equals λ, the other player’s belief must also be λ.

Intuitively, what is required of the belief updating rule to make σ
(v1,v2)
Nash an equilibrium

is that an aD-player is much more likely to play aD after deviation occurs. As a matter
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of fact, there are alternative beliefs that suffice for supporting our construction of equi-

librium, but we choose the belief defined above for its tractability and clear implication.

The justification of the beliefs about the other actions is similar to and simpler than

the above analysis and is thus omitted.

Part II: we categorize possible histories of play and identifies the conditions

under which σ
(v1,v2)
Nash is optimal for each player, and show that these conditions

are captured by Assumption 1.

Step 1. We begin with histories where at least one deviation from σ
(v1,v2)
Nash has occurred.

Step 1.1. t ∈ {2, · · · , T}, aD has occurred before. In this case, it is common

knowledge that both players are aD-players, they will play aD from now on.

Step 1.2. t ∈ {t∗, · · · , T}, aD has not occurred before. Suppose that λ̃Di,t = λ̃Dj,t = 0,

note that this can only occur when t ≥ t∗ + 1 since no one is supposed to play aD

before t. If i is not an aD-player, given that j will play a(0) from now on according

to σ
(v1,v2)
Nash , her best response is to also play a(0) from now on. If i is an aD-player,

for t = T it is clear that she will play aD; for t ∈ {t∗ + 1, · · · , T − 1}, it suffices for

σ
(v1,v2)
Nash to be optimal that she (weakly) prefers playing a(0) now and aD in the next

period to playing aD now. The corresponding condition is

0 + g1(aD, a(0)) ≥ g1(aD, a(0)) + g1(aD, aD)

0 ≥ g1(aD, aD). (1)

Next suppose that λ̃Di,t = λ̃Dj,t = λD, since at least one deviation has occurred and

since t ≥ t∗, the beliefs jump to either 0 or 1 in the next period, conditional on

the actions taken at t. If i is not an aD-player, she knows that player j is going

to play aD in the next period if and only if j is an aD-player, and information will

inevitably become complete in the next period. Therefore, i should maximize her

current-period payoff and play a(λD). If i is an aD-player, the one-step deviation

principle gives a sufficient condition for aD to be optimal:

λD(T − t+ 1)g1(aD, aD) + (1− λD)(g1(aD, a(λD)) + (T − t)g1(aD, aD))

≥λD(g1(a(λD), aD) + (T − t)g1(aD, aD)) + (1− λD)(gmax + 0 · (T − t− 1) + gmax)

λD

1− λD
(g1(aD, aD)− g1(a(λD), aD)) + (T − t)g1(aD, aD) ≥ 2gmax − g1(aD, a(λD)).

In this condition, we relax i’s payoff from playing an action other than aD such

that she can earn a strictly higher payoff gmax immediately and also gmax in period

T when j cannot play aD. By Assumption 1, g1(aD, aD) ≤ 0, then this condition

23



holds for every t ∈ {t∗, · · · , T} if it holds for t = t∗:

λD

1− λD
(g1(aD, aD)− g1(a(λD), aD)) + (T − t∗)g1(aD, aD) ≥ 2gmax − g1(aD, a(λD))

g1(a(λD), aD) ≤ 1

λD
{[(1− λD)(T − t∗) + λD]g1(aD, aD)− (1− λD)(2gmax − g1(aD, a(λD)))}.

(2)

Step 1.3. t ∈ {2, · · · , t∗ − 1}, aD has not occurred before. The players’ beliefs

remain at λDi,t = λDj,t = λD. If i is not an aD-player, following the one-step deviation

principle it is clear that her optimal action is a(0). If i is an aD-player, she prefers

a(0) to aD (and, of course, every other action in A) if

0(t∗ − t) + λD(T − t∗ + 1)g1(aD, aD) + (1− λD)(g1(aD, a(λD)) + (T − t∗)g1(aD, aD))

≥gmax + (T − t)g1(aD, aD)

(1− λD)g1(aD, a(λD)) ≥ gmax + (t∗ − t− λD)g1(aD, aD).

Again, we relax the payoff from playing aD so that i earns gmax immediately. As

g1(aD, aD) ≤ 0, the above condition holds for every t ∈ {2, · · · , t∗ − 1} if it holds

for t = t∗ − 1:

(1− λD)g1(aD, a(λD)) ≥ gmax + (1− λD)g1(aD, aD)

g1(aD, aD) ≤ g1(aD, a(λD))− 1

1− λD
gmax. (3)

Step 2. Now we consider histories that have not deviated from σ
(a1,a2)
Nash .

Step 2.1. t = T . It is clear that an aD-player will use aD, and by the definition of

a(λD) a player who cannot play aD will use a(λD) against a(λD).

Step 2.2. t ∈ {t∗, · · · , T − 1}. If i is not an aD-player, she will not deviate from

a(0) if

λDg1(a(λD), aD) + (1− λD)g1(a(λD), a(λD)) ≥0 + λD(g1(a(λD), aD) + (T − 1− t)g1(aD, aD))

+ (1− λD)(g1(a(λD), a(λD)) + (T − 1− t) · 0),

where the first 0 on the right-hand side measures the upper bound of her current

payoff from a deviation from a(0). Since g1(aD, aD) ≤ 0, the above condition always

holds for every t ∈ {t∗, · · · , T − 1}.
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If i is an aD-player, she will not deviate to any other action in A if

λDg1(aD, aD) + (1− λD)g1(aD, a(λD))

≥0 + λD(T − t)g1(aD, aD) + (1− λD)(g1(aD, a(λD)) + (T − 1− t)g1(aD, aD)),

where the first 0 on the right-hand side measures the upper bound of her current

payoff from a deviation to any other action in A. Since g1(aD, aD) ≤ 0, the above

condition always holds for every t ∈ {t∗, · · · , T − 1}.

She will not deviate to aD if

λDg1(aD, aD) + (1− λD)g1(aD, a(λD)) ≥ g1(aD, a(0)) + (T − t)g1(aD, aD).

As g1(aD, aD) ≤ 0, the above condition holds for every t ∈ {t∗, · · · , T−1} if it holds

for t = T − 1:

(1− λD)(g1(aD, a(λD))− g1(aD, aD)) ≥ g1(aD, a(0))

g1(aD, aD) ≤ g1(aD, a(λD)− 1

1− λD
g1(aD, a(0)).

The above inequality is guaranteed by (3).

Step 2.3. t ∈ {3, · · · , t∗ − 1}. Suppose that there exists a1, a2 such that all the

pure actions that constitute a1 and a2 are played with positive weights in the first

two periods and g1(a1, a2) = v1, g2(a1, a2) = v2. As no publicly identified deviation

occurred, since period 3, the players must have played (a1, a2), which is an element

of av(A). If i is not an aD-player, she will not deviate from playing ai if

(t∗ − t)vi + 0 · (T − t∗) + λDg1(a(λD), aD) + (1− λD)g1(a(λD), a(λD))

≥gmax + 0(t∗ − t− 1) + λD(g1(a(λD), aD) + (T − t∗)g1(aD, aD))

+ (1− λD)(g1(a(λD), a(λD)) + 0(T − t∗)),

where gmax measures the upper bound of her current payoff from a deviation from

ai. As vi ≥ 0, g1(aD, aD) ≤ 0, the above condition holds for every t ∈ {1, · · · , t∗−1}
if it holds for t = t∗ − 1, vi = 0:

0 ≥ gmax + λD(T − t∗)g1(aD, aD)

g1(aD, aD) ≤ − 1

λD(T − t∗)
gmax. (4)
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If i is an aD-player, she will not deviate to any other action in A if

(t∗ − t)vi + 0 · (T − t∗) + λDg1(aD, aD) + (1− λD)g1(aD, a(λD))

≥gmax + 0(t∗ − t− 1) + λD(T + 1− t∗)g1(aD, aD)

+ (1− λD)(g1(M,a(λD)) + (T − t∗)g1(aD, aD)),

where gmax measures the upper bound of her current payoff from a deviation to

any other action in A. The above condition holds for every t ∈ {1, · · · , t∗ − 1} if it

holds for t = t∗ − 1, vi = 0:

0 ≥ gmax + (T − t∗)g1(aD, aD)

g1(aD, aD) ≤ − 1

T − t∗
gmax. (5)

The above condition is guaranteed by (4).

She will not deviate to aD if

(t∗ − t)vi + 0(T − t∗) + λDg1(aD, aD) + (1− λD)g1(aD, a(λD))

≥g1(aD, a(0)) + (T − t)g1(aD, aD).

The above condition holds for every t ∈ {1, · · · , t∗ − 1} if it holds for t = t∗ − 1,

vi = 0:

λDg1(aD, aD) + (1− λD)g1(aD, a(λD)) ≥ g1(aD, a(0)) + (T + 1− t∗)g1(aD, aD)

g1(aD, aD) ≤ 1

T + 1− t∗ − λD
[(1− λD)g1(aD, a(λD))− g1(aD, a(0))].

(6)

Next suppose that such a1, a2 does not exist. Following σ
(v1,v2)
Nash , the players play

(a(0), a(0)). If i is not an aD-player, she will not deviate from playing a(0) if

(t∗ − t)0 + 0 · (T − t∗) + λDg1(a(λD), aD) + (1− λD)g1(a(λD), a(λD))

≥gmax + 0(t∗ − t− 1) + λD(g1(a(λD), aD) + (T − t∗)g1(aD, aD))

+ (1− λD)(g1(a(λD), a(λD)) + 0(T − t∗)),

which is exactly (4). An aD-player, on the other hand, will not deviate to any other

26



action in A if

(t∗ − t)0 + 0 · (T − t∗) + λDg1(aD, aD) + (1− λD)g1(aD, a(λD))

≥gmax + 0(t∗ − t− 1) + λD(T + 1− t∗)g1(aD, aD)

+ (1− λD)(g1(aD, a(λD)) + (T − t∗)g1(aD, aD)),

which is exactly (5) and is therefore guaranteed by (4). She will not deviate to aD

if

(t∗ − t)vi + 0(T − t∗) + λDg1(aD, aD) + (1− λD)g1(aD, a(λD))

≥g1(aD, a(0)) + (T − t)g1(aD, aD),

which is exactly (6).

Step 2.4. In period 2:

– a. Suppose that player 1 played aep(A) for some A ∈ A(v1, v2) in period 1.

For i = 1, 2, if player i follows σ
(v1,v2)
Nash , she gets vi in periods 2, · · · , t∗ − 1 and

0 in periods t∗, · · · , T − 1, and an expected payoff E in period T . The value

of E is λDg1(aD, aD) + (1 − λD)g1(aD, a(λD)) if player i is an aD-player, and

λDg1(a(λD), aD) + (1 − λD)g1(a(λD), a(λD)) if she is not. If player i takes a

one-step deviation, she gets at most gmax in period 2, 0 in periods 3, · · · , t∗−1,

E in period t∗, and a negative expected payoff afterwards. When T (and hence

t∗) is sufficiently large, it is optimal to follow σ
(v1,v2)
Nash .

– b. Suppose that player 1 did not play aep(A) for any A ∈ A(v1, v2) in period

1, and 2A2∪A1,2 ∩ A(v1, v2) 6= ∅. For player 2, it is clear that playing aep(A)

for some A ∈ A(v1, v2) now dominates any other action when T is sufficiently

large; among the set of possible aep(A) that player 2 can choose from, the one

that currently best responds to a(0) is optimal since they generate identical

continuation payoffs from the next period onwards. For player 1, every one-step

deviation from σ
(v1,v2)
Nash yields at most gmax currently, 0 in periods 3, · · · , t∗− 1,

E in period t∗, and a negative expected payoff afterwards; however, following

σ
(v1,v2)
Nash bears a positive probability of yielding v1 in periods 3, · · · , t∗−1. When

T (and hence t∗) is sufficiently large, it is optimal to follow σ
(v1,v2)
Nash .

– c. Suppose that player 1 did not play aep(A) for any A ∈ A(v1, v2) in period

1, and 2A2∪A1,2 ∩A(v1, v2) = ∅. Player 1 has identical incentives to step 2.4.b,

and the corresponding proof applies. For player 2, every one-step deviation

from σ
(v1,v2)
Nash yields a lower continuation payoff from the next period onwards,

and a(0) is a best response to a(0) which will be played by player 1 in the

current period. Hence, it is optimal to follow σ
(v1,v2)
Nash .
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Step 2.5. In period 1:

– a. Player 2 has incentives similar to those of player 1 in step 2.4.b, and the

corresponding proof applies.

– b. Suppose that 2A1 ∩ A(v1, v2) 6= ∅. For player 1, playing aep(A) for some

A ∈ A(v1, v2) now dominates any other action when T is sufficiently large, since

cooperation can thus be sustained for sure instead of only with a probability

strictly smaller than 1. Among the set of possible aep(A) that player 1 can

choose from, the one that currently best responds to a(0) is optimal since they

generate identical continuation payoffs from the next period onwards.

– c. Suppose that 2A1 ∩ A(v1, v2) = ∅ and Ā ∩ A1 6= ∅. The current gain

for player 1, from deviating from σ
(v1,v2)
Nash , is at most gmax − gmin. However,

every additional action in Ā that player 1 includes in her current period’s play

increases the probability that cooperation will start from period 3. Hence,

when T is sufficiently large, playing aep(Ā ∩ A1) is optimal.

– d. Suppose that Ā ∩ A1 = ∅. Now player 1 has incentives similar to those of

player 2 in step 2.4.c, and the corresponding proof applies.

Note that g1(aD, a(λD)), g1(aD, a(0)) ∈ [gmin, gmax]. Hence we can conclude that (i)

given T − t∗, inequalities (1) and (3)-(6) must hold when g1(aD, aD) is sufficiently small;

(ii) since g1(a(λD), aD) ≤ gbr,aD , given g1(aD, aD) and T − t∗, inequality (2) must hold

when gbr,aD is sufficiently smaller than g1(aD, aD). Finally, we let t∗ = T −1 in particular,

and it is straightforward to verify by direct calculation that Assumption 1(a) implies

the condition for (i) and Assumption 1(b) implies the condition for (ii).9 Hence, σ
(a1,a2)
Nash

constitutes an equilibrium for all T .

Finally, given g1(aD, aD) and gbr,aD , a player’s sum of payoffs in periods t∗, · · · , T is a

type-dependent constant which is bounded; the upper bound is gmax, and we denote the

lower bound as K. Thus, fixing T − t∗ and for every ε, there must exist T ∗ sufficiently

large such that for every T ≥ T ∗ and for i = 1, 2, [ (T−t∗)(K−vi)
T

, (T−t∗)(gmax−vi)
T

] ⊆ [−ε, ε],
i.e. player i’s average payoff is within ε of vi. This completes the proof.

A.2 Proof of Theorem 2

We first prove that no efficient payoff vector can be implemented with either player playing

aD. Suppose an efficient payoff vector is attained from the action profile (aD, a) for some

9The verification for conditions (1)-(5) is simple. For (6), when t∗ = T −1, (6) becomes g1(aD, aD) ≤
1−λD

2−λD [g1(aD, a(λD))− g1(a
D,a(0))

1−λD ]. Note that g1(aD, a(λD))− g1(a
D,a(0))

1−λD ≥ gmin− gmax

1−λD , if g1(aD, a(λD))−
g1(a

D,a(0))
1−λD ≤ 0, then 1−λD

2−λD [g1(aD, a(λD)) − g1(a
D,a(0))

1−λD ] ≥ g1(aD, a(λD)) − g1(a
D,a(0))

1−λD ≥ gmin − gmax

1−λD ; if

g1(aD, a(λD))− g1(a
D,a(0))

1−λD > 0, then 1−λD

2−λD [g1(aD, a(λD))− g1(a
D,a(0))

1−λD ] > 0 > gmin− gmax

1−λD . In conclusion,
Assumption 1(a) implies a sufficient condition for (6).
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a ∈ A (since (aD, aD) yields less payoff than (a(0), a(0)) and is clearly not efficient). The

player who takes aD obtains at most gmax. The player who does not take aD obtains at

most gbr,aD . However, Assumption 1(a) implies −g1(aD, aD) > gmax

λD
≥ λDgmax, and hence

Assumption 1(b) implies

gmax + gbr,aD <
1

λD
[g1(aD, aD)− (1− λD)(2gmax − gmin)] + gmax

=
1

λD
[g1(aD, aD)− (1− λD)(2gmax − gmin) + λDgmax]

≤ 1

λD
[g1(aD, aD)− (1− λD)(2gmax − gmin)− g1(aD, aD)]

= −1− λD

λD
(2gmax − gmin)

< 0

= g(a(0), a(0)).

Since a(0) only involves the actions that are always feasible, aD can never appear in an

action profile that results in efficient payoffs.

Next, suppose that there are L possible ex-post efficient total payoffs, v1, · · · , vL, each

corresponding to one or more pure action profiles in one or more possible configurations

of A1 ∪ A2. Without loss of generality, assume that v1 > v2 > · · · > vL > 0. Let Al

denote the set of smallest sets of pure actions that can achieve vl. For each A ∈ Al

(each A consists of at most two pure actions), we use al(A) to denote an action profile in

∆(A× A) to achieve vl

2
for each player. Let Āl = ∪A∈AlA.

Consider the following strategy profile, denoted σe:

1. The players follow the strategies below:

– a. In period 1: if 2A1 ∩ A1 6= ∅, player 1 finds A∗ such that aep(A
∗) is a best

response to a(0) among aep(A), A ∈ 2A1∩A1, and plays aep(A
∗); if 2A1∩A1 = ∅,

player 1 plays aep(Ā
1∩A1) if Ā1∩A1 6= ∅, and a(0) otherwise. Player 2 plays

a(0).

– b. In period t > 1, if either player has played aD before, both players play aD.

Otherwise, follow the strategy described below.

2. In period 2:

– a. If there was no deviation from 1, then (1) if player 1 played aep(A) for

some A ∈ A1 in period 1, the players play a1(A); (2) otherwise, then (2a) if

2A2∪A1,2∩A1 6= ∅, player 2 finds A∗ such that aep(A
∗) is a best response to a(0)

among aep(A), A ∈ 2A2∪A1,2 ∩ A1, and plays aep(A
∗); (2b) if 2A2∪A1,2 ∩ A1 = ∅

and 2A2∪A1,2∩A2 6= ∅, player 2 finds A∗ such that aep(A
∗) is a best response to

a(0) among aep(A), A ∈ 2A2∪A1,2∩A2, and plays aep(A
∗); (2c) if 2A2∪A1,2∩A1 =
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2A2∪A1,2∩A2 = ∅ and Ā2∩(A2∪A1,2) 6= ∅, player 2 plays aep(Ā
2∩(A2∪A1,2));

(2d) player 2 plays a(0) otherwise. Player 1 plays a(0).

– b. If there was a deviation from 1, the players play (a(0), a(0)).

...

t (t ≤ L). In period t: let i = 1 if t is an odd number and 2 if t is an even number.

– a. If there was no deviation from 1 to t−1, then (1) if player j 6= i played aep(A)

for some A ∈ Al for some l ≤ t− 1 in period t− 1, the players play al(A); (2)

otherwise, then (2a) if 2Ai∪Aj,t ∩At−1 6= ∅, player i finds A∗ such that aep(A
∗)

is a best response to a(0) among aep(A), A ∈ 2Ai∪Aj,t∩At−1, and plays aep(A
∗);

(2b) if 2Ai∪Aj,t ∩ At−1 = ∅ and 2Ai∪Aj,t ∩ At 6= ∅, player i finds aep(A
∗) such

that aep(A
∗) is a best response to a(0) among aep(A), A ∈ 2Ai∪Aj,t ∩ At, and

plays aep(A
∗); (2c) if 2Ai∪Aj,t∩At−1 = 2Ai∪Aj,t∩At = ∅ and Āt∩(Ai∪Aj,t) 6= ∅,

player i plays aep(Ā
t ∩ (Ai ∪ Aj,t)); (2d) player i plays a(0) otherwise. Player

j plays a(0).

– b. If there was a deviation from 1 to t− 1, the players play (a(0), a(0)).

...

L + 1. In period L + 1: Let i be 1 if L is an even number and 2 if L is an odd

number.

– a. If there was no deviation from 1 to L, then (1) if player j 6= i played aep(A)

for some A ∈ Al for some l in period L, the players play al(A); (2) otherwise,

then (2a) if 2Ai∪Aj,L+1 ∩ AL 6= ∅, player i finds aep(A
∗) such that aep(A

∗) is a

best response to a(0) among aep(A), A ∈ 2Ai∪Aj,L+1 ∩ AL, and plays aep(A
∗);

(2b) player i plays a(0) otherwise. Player j plays a(0).

– b. If there was a deviation from 1 to L, the players play (a(0), a(0)).

L + 2. Let t∗ ∈ N+ be such that T − t∗ ≥ 1 and is a constant. In period t ∈
{L+ 2, · · · , t∗ − 1}:

– a. If there was no deviation from 1 to L+ 1, then (1) if player 2 played aep(A)

for some A ∈ Al for some l in period L+1, the players play al(A); (2) if player

2 played a(0) in period 2L, the players play (a(0), a(0)).

– b. If there was a deviation from 1 to L+ 1, the players play (a(0), a(0)).

L+ 3. In period t ∈ {t∗, · · · , T − 1}, if there was no deviation from 1 to L+ 2, the

players play (a(0), a(0)). Otherwise, for i = 1, 2, play aD if i is an aD-player and

a(λD) if i is not an aD-player.
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L+4. In period T , for i = 1, 2, if i is an aD-player, play aD; if i is not an aD-player,

play a(λD).

L+ 5. The belief updating rule λ̃ki,t is the same as the proof of Theorem 1.

To verify that σe is an equilibrium when T is sufficiently large, given the proof of

Theorem 1, we only need to prove optimality of the above strategies on path (in the

sense that no deviation has been publicly identified) from period 1 to L+ 1, for agent 1

in odd-number periods and agent 2 in even-number periods. Our argument consists of

the following steps.

Step 1. In period L+ 1:

– a. If player j played aep(A) for some A ∈ Al for some l in period L, by

definition of al(A) we know that each player’s per-period payoff in periods

L+ 2, · · · , t∗− 1 is vl

2
> 0, while the current gain from any one-step deviation

is at most gmax−gmin at the cost of lowering the subsequent payoffs in periods

L + 2, · · · , t∗ − 1 to 0. When T (and hence t∗) is sufficiently large, following

σe is optimal. Otherwise:

– b. If 2Ai∪Aj,L+1∩AL 6= ∅, it is first strictly better for player i to play aep(A) for

some A ∈ 2Ai∪Aj,L+1 ∩ AL when T is sufficiently large. It yields the maximum

possible continuation payoff, vL

2
in periods L+ 2 to t∗−1 with certainty, while

the payoff from any one-step deviation is upper-bounded by gmax−gmin in the

current period and 0 in periods t+ 1 to t∗ − 1. Therefore, the optimal action

for player i is a best response to a(0) among aep(A) for A ∈ 2Ai∪Aj,L+1 ∩ AL.

– c. If 2Ai∪Aj,L+1 ∩AL = ∅, playing any other action than a(0) triggers M from

a pro opponent in periods {t∗, · · · , T − 1}. Hence given the conditions on the

payoff parameters, a(0) is optimal.

Step 2. In period t, t ≤ L:

– a. If player j played aep(A) for some A ∈ Al for some l ≤ t− 1 in period t− 1,

the proof follows step 1a. Otherwise:

– b. If 2Ai∪Aj,t ∩ At−1 6= ∅, it is strictly better for player i to play aep(A) for

some A ∈ 2Ai∪Aj,t ∩ At−1 when T is sufficiently large. It yields the maximum

possible continuation payoff, vt−1

2
in periods t + 1 to t∗ − 1 with certainty,

while the payoff from any one-step deviation is upper-bounded by gmax− gmin
in the current period and at most vt

2
in periods t + 1 to t∗ − 1. Therefore,

the optimal action for player 1 is a best response to a(0) among aep(A) for

A ∈ 2Ai∪Aj,t ∩ At−1.
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– c. If 2Ai∪Aj,t ∩At−1 = ∅ and 2Ai∪Aj,t ∩At 6= ∅, it is strictly better for player i

to play aep(A) for some A ∈ 2Ai∪Aj,t ∩At when T is sufficiently large. It yields

the maximum possible continuation payoff, vt

2
in periods t + 1 to t∗ − 1 with

certainty, while the payoff from any one-step deviation is upper-bounded by

gmax − gmin in the current period and at most vt

2
only with a < 1 probability

in periods t+ 1 to t∗ − 1. Therefore, the optimal action for player 1 is a best

response to a(0) among aep(A) for A ∈ 2Ai∪Aj,t ∩ At.

– d. If 2Ai∪Aj,t ∩ At−1 = 2Ai∪Aj,t ∩ At = ∅ and Āt ∩ (Ai ∪ Aj,t) 6= ∅, every

additional action in Āt that player 1 includes in her current period’s play

increases the probability that cooperation with payoff (v
t

2
, v

t

2
) will start from

period t+ 1. Hence, when T is sufficiently large, player i’s best response is to

play a(Āt ∩ (Ai ∪ Aj,t)).

– e. If 2Ai∪Aj,t ∩ At−1 = 2Ai∪Aj,t ∩ At = Āt ∩ (Ai ∪ Aj,t) = ∅, playing any other

action than a(0) triggers aD from a pro opponent in periods {t∗, · · · , T −1}, as

well as prevents any possible cooperation in periods 2q + 1, · · · , t∗ − 1. Hence

when T is sufficiently large, a(0) is optimal.

In conclusion, when T is sufficiently large, σe is an equilibrium. Moreover, we know

from Theorem 1 that i’s payoff in σe is within ε of v(A1 ∪A2) given sufficiently large T .

This completes the proof.

B Additional Results

B.1 On Imperfect Learning

For µ ∈ (0, 1), a prominent difference from ”perfect learning” (µ = 1) is that, now a

player having used aD is still unsure about her opponent’s type unless the opponent has

also used aD, and her belief may evolve further afterwards. Specifically, suppose that

player i has played aD in period t, her belief at the beginning of period t+ 1 becomes

λ̃Di (ht) = λ̃Di (ht−1) + (1− λ̃Di (ht−1))µ.

If her opponent plays aD in period t + 1, λ̃i jumps to 1 and persists afterwards. If the

opponent plays an action in A, i’s belief depends on the opponent’s strategy profile, which

i takes as given in an equilibrium.

For the simplicity of notations, here we once again normalize the payoffs such that

gmin = 0. In addition, we assume that gbr,aD is sufficiently small. In particular:

gbr,aD < −gmax. (7)
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We will present two results in this section. First, the existence of equilibrium as well

as the supportable payoff space is discontinuous at µ = 1, as for every µ sufficiently close

to 1 we can find a sufficiently large T such that the repeated games have no equilibrium.

Proposition 2. There exists µ∗ ∈ (0, 1) such that for every µ > µ∗, there exists no

equilibrium when T is sufficiently large.

Proof. Suppose that the game has some equilibrium σ∗. Consider the following (possibly

off-equilibrium path) history: player i can play aD and plays aD at t = 1, while player j

plays an action in A. Bayes’ updating of beliefs indicates that for every t > 1, λDj,t = 1.

We prove the nonexistence of equilibrium in five steps.

Step 1. We first introduce some definitions that will be useful for the rest of the proof.

Definition 1. If player j’s action for the current period is (1) aD if available, and (2) an

action (or a combination of actions) in A if aD is not available, we say that she is using

a separating strategy (Se) at this period. If j’s action for the current period is invariant

across types, we say that she is using a pooling strategy (Po).

Definition 2. Suppose that in equilibrium, starting from the current period, both player

i and j only play actions other than aD until period T − 1 and aD × Se at period T .

We call this path a ”cooperative path.” Suppose that in equilibrium, starting from the

current period, player i and j play aD × Se up to the last period. We call this path a

”noncooperative path.”

In the remaining steps 2-5, we will show that for every µ sufficiently close to 1, there

cannot be any equilibrium play given the above history when T is sufficiently large.

Step 2. We prove that there exists µ̄ such that for every µ > µ̄, if λDi,T−1 = 0, a

cooperative path ensues at t = T − 1 in every equilibrium.

At t = T , it is clear that in every equilibrium player i plays aD and player j plays Se.

At t = T − 1, in every equilibrium, player j must play Se since her opponent will

surely play aD in the last period. Let λDi,T−1 = 0. If player i’s equilibrium play at T − 1

is aD, player j’s equilibrium play must be a(1), and, for every a ∈ A

g1(aD, a(1)) + µg1(aD, aD) + (1− µ)g1(aD, a(1)) ≥ g1(a, a(1)) + g1(aD, a(1))

µg1(aD, aD) + (1− µ)g1(aD, a(1)) ≥ g1(a, a(1))

µ ≤ g1(a, a(1))− g1(aD, a(1))

g1(aD, aD)− g1(aD, a(1))
. (8)

Let µ̄ = maxa∈A\{aD}
g1(a,a(1))−g1(aD,a(1))
g1(aD,aD)−g1(aD,a(1))

< −gmax

g1(aD,aD)−gmax
∈ (0, 1) and µ > µ̄, then (8)

is violated, which means that in no equilibrium will player i play aD at T − 1 if his belief

is 0.
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Step 3. We prove that there exists µ̂ sufficiently close to 1 such that for every µ > µ̂,

if λDi,T−1 ≥ µ, a noncooperative path ensues at t = T − 1 in every equilibrium.

At t = T , it is clear that in every equilibrium player i plays aD and player j plays Se.

At t = T − 1, in every equilibrium, player j must play Se since her opponent will

surely play aD in the last period. If player i’s equilibrium play at T − 1 is some a ∈ A
and player j’s equilibrium play is some a′ ∈ A when aD is not available, it is necessary

that

λDi,T−1(g1(a, aD) + g1(aD, aD)) + (1− λDi,T−1)(g1(a, a′) + g1(aD, a(1)))

≥λDi,T−1(g1(aD, aD) + g1(aD, aD)) + (1− λDi,T−1)(g1(aD, a′)

+ µg1(aD, aD) + (1− µ)g1(aD, a(1)))

λDi,T−1 ≤
g1(aD, a′) + µg1(aD, aD) + (1− µ)g1(aD, a(1)))

g1(aD, a′) + g1(a, aD)− (1− µ)g1(aD, aD)− µg1(aD, a(1))− g1(a, a′)
. (9)

Note that given (7), the denominator in (9) is negative and the value of the right-hand

side of (9) is strictly less than 1 when µ = 1. Take

µ̂ = max
a,a′∈A\{aD}

min
µ
{µ :

g1(aD, a′) + µ′g1(aD, aD) + (1− µ′)g1(aD, a(1)))

g1(aD, a′) + g1(a, aD)− (1− µ′)g1(aD, aD)− µ′g1(aD, a(1))− g1(a, a′)
≤ µ′

∀µ′ ≥ µ},

and we know that µ̂ is upper-bounded by

min
µ
{µ :

µ′g1(aD, aD) + (1− µ′)gmax
gbr,aD − (1− µ′)g1(aD, aD)− µ′gmax

≤ µ′ ∀µ′ ≥ µ}.

For every µ > µ̂, if λDi,T−1 ≥ µ, (9) is violated. Hence, in every equilibrium player i always

plays aD at both t = T and t = T − 1.

Step 4. We prove that there exists µ∗ ∈ (0, 1) such that for every µ > µ∗, if for some

integer k ≥ 2 and every t ∈ (T − k, T ), ever equilibrium has a cooperative path when

λDi,t = 0 and a noncooperative path when λDi,t ≥ µ, then at t = T−k−1, every equilibrium

has a cooperative path when λDi,t = 0 and a noncooperative path when λDi,t ≥ µ.

Let µ′ = gmax

gmax−g1(aD,aD)
, and let µ∗ = max{µ̄, µ̂, µ′}.

Consider t = T −k−1 and λDi,t = 0. If player i’s equilibrium play at t is aD (note that

her equilibrium play must be constituted by either pure aD or a possibly mixed action

without aD, as a mixed action with a positive proportion of aD generates the same learning

probability for the opponent), by Step 2 we know that a noncooperative path ensues at

period T − k. Hence, since µ > µ∗ ≥ µ′, player i’s continuation payoff is bounded

above by g1(aD, a(1)) + µg1(aD, aD) + (1 − µ)g1(aD, a(1)). If she switches to playing

arg maxa∈A g1(a, a(1)), her continuation payoff is bounded below by maxa∈A g1(a, a(1)) +

g1(aD, a(1)). From (8) we know that g1(aD, a(1)) + µg1(aD, aD) + (1 − µ)g1(aD, a(1)) <
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maxa∈A g1(a, a(1)) + g1(aD, a(1)) when µ > µ∗ ≥ µ̄, and hence i’s equilibrium play can

never be aD. From Step 2, every equilibrium consists a cooperative path.

Consider t = T − k − 1 and λDi,t ≥ µ. Suppose that player i’s equilibrium play at t is

not aD. If player j’s equilibrium play is Po, by Step 2 we know that a noncooperative

path must ensue at period T − k, which means that Po is never optimal for player j, a

contradiction. On the other hand, if player j’s equilibrium play is Se and if j can play

aD, a noncooperative path must ensue at period T − k. However, now j has a profitable

deviation of mimicking j’s equilibrium action when he is not able to play aD in period t

and deferring aD to period T − k, yielding a net benefit of at least −g1(aD, aD), again,

this is a contradiction. Hence, player i’s equilibrium play at t must be aD. Since a

noncooperative path must ensues at period T − k, player j’s equilibrium play at t must

be Se. Therefore, every equilibrium has a noncooperative path.

Combining Steps 2, 3 and 4, we know that for every µ > µ∗ at every period t ≤ T −1,

every equilibrium consists a cooperative path when λDi,t = 0 and a noncooperative path

when λDi,t ≥ µ.

Step 5. We prove that for every µ > µ∗, there exists T (µ) ∈ N+ such that for every

T > T (µ), player i never plays aD in period 2 in any equilibrium .

We know that λDi,2 is bounded above by µ′′ = µ + µ(1 − µ) ∈ (0, 1). Suppose that

player i’s equilibrium play at t = 2 is aD. By Step 4, it implies that a noncooperative

path ensues at period 2. Let p ∈ (0, 1) be a probability such that

pg1(aD, aD) + (1− p)gmax ≤ (µ′′ + µ′′(1− µ′′))g1(aD, aD).

On a noncooperative path, we know that there exists T ′(µ) such that the probability that

j can play aD at t = T ′(µ), evaluated at the beginning of t = 2, is at least p. In other

words, i’s expected payoff in every period after t = T ′(µ), evaluated at the beginning

of t = 2, is at most (µ′′ + µ′′(1 − µ′′))g1(aD, aD). Let T ′′(µ) = min{T ′(µ)}. Player i’s

continuation payoff at the beginning of t = 2, assuming that her equilibrium play is aD,

is then bounded above by

(T ′′(µ)− 1)gmax + (T − T ′′(µ))(µ′′ + µ′′(1− µ′′))g1(aD, aD). (10)

If player i deviate by playing a(1), with probability µ′′ her opponent can play aD and she

gets g1(aD, aD) from t = 3 onwards, with probability 1−µ′′ her opponent cannot play aD

and a cooperative path ensues at t = 3. Player i’s continuation payoff at the beginning

of t = 2, assuming her deviating to a(1), is then bounded below by

µ′′(gbr,aD + (T − 2)g1(aD, aD)). (11)
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Taking the difference (11)-(10), the net benefit from deviation is bounded below by

µ′′gbr,aD − (T ′′(µ)− 1)gmax − µ′′(2 + (T − T ′′(µ))(1− µ′′))g1(aD, aD). (12)

Since g1(aD, aD) < 0, there must exist T (µ) such that when T > T (µ), (12) > 0. Hence,

player i never plays aD in period 2. However, this is a contradiction to our assertion in

Step 4 that a noncooperative path must occur when λDi,2 ≥ µ, which implies that there

exists no equilibrium. This completes the proof.

Proposition 2 highlights contradicting incentives when µ is large in the case where one

player, say i, has revealed herself to be an aD-player early in the repeated games. When

time t is close to the end, i takes opposite actions in every equilibrium (if any) according

to her belief about the opponent j’s type: if she believes with at least probability µ in

facing another aD-player, she will use aD since it only affects the belief marginally, and

j will also very likely respond by aD; however, if she believes with certainty that j still

cannot play aD, she will not use aD as it brings a probability of at least µ that she will

face aD later.

Now consider a history where i believes that j is an aD-player with at least probability

µ at the beginning of period t − 1. It is straight forward that such a history, possibly

off-path, can always occur. We can thus deduce that, i must now play aD in every

equilibrium: otherwise, j will not play a type-dependent action because j would rather

pretend to be unable to play aD, in exchange for not starting (aD, aD) prematurely; j will

not play the same action between types either, because thus i will play aD from the next

period onwards and j, if an aD-player, would rather start aD now. Therefore, the only

possible equilibrium play in period t − 1 is for i to play aD and j to play aD as well if

she can. This argument then unravels backwards to the very period right after i revealed

her type. However, it is clear that she should refrain from aD now in order to observe j’s

type, a contradiction.

Nevertheless, Proposition 2 does not exclude the existence of equilibrium for large µ

once and for all. Reversing the parametric setting, i.e. when a sufficiently large T is fixed

and µ approaches 1, the existence of a (cooperative) equilibrium is preserved. We state

the result below; its proof follows that of Theorem 1.

Proposition 3. For i = 1, 2, every ε > 0 and every (v1, v2) ∈ V ∗Nash, there exists

T (ε) ∈ N+ and µ(T (ε)) ∈ (0, 1) such that for all T > T (ε), µ > µ(T (ε)), there exists an

equilibrium where player i’s average payoff is within ε of vi.
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B.2 On Sustaining Minimax Payoffs

Theorem 1 and 2 shows the sustainability of payoffs that dominate Nash equilibrium

payoffs. In this section, we propose another equilibrium to enlarge the set of sustainable

payoffs from ∆(A × A) to their lower bound – the minimax payoffs. To begin with, we

introduce some additional notations below.

Let aminimax := arg minai∈Ae maxaj∈Ae gj(ai, aj) denote a player’s minimax strategy

against her opponent inAe×Ae. We normalize the payoffs such that minai maxaj gj(ai, aj) =

0, and let gminimax := g1(aminimax, aminimax). Note that gminimax ≤ 0 and g1(a(0), a(0)) ≥
0 with this normalization. If gminimax = 0 or g1(a(0), a(0)) = 0, we can directly apply

Theorem 1 and 2; hence we assume here that gminimax < 0 and g1(a(0), a(0)) > 0.

Let V e denote the convex hull of the set {g(a, a′) : a, a′ ∈ Ae}. Let V ∗minimax :=

int(V e ∩ (R+ × R+) ∪ V ∗Nash). For every payoff vector (v1, v2) ∈ V ∗minimax, let (a1, a2)

denote a (possibly mixed) action profile that achieves (v1, v2). To incorporate the more

prohibitive punishment of minimax payoffs and thus the larger set of sustainable equilib-

rium payoffs, we rewrite Assumption 1 as the following more general version.

Assumption 1’. Fix {λk}k=m+1,··· ,n, λ
D, gmax, and gmin. There exists a sufficiently small

number ĝ ∈ R− and a sufficiently large number g̃ ∈ R+ such that g1(aD, aD) < ĝ and

gbr,aD < g1(aD, aD)− g̃.

Our next result, Theorem 3, is a direct extension of Theorem 1. It enlarges the range

of (approximately within ε) supportable average payoffs to V ∗minimax. The key to sustain

payoffs lower than g1(a(0), a(0)) is to introduce a new phase after Phase II (cooperation)

to allow the players to end any carried out punishment in a fixed number of periods,

prior to the Phase III (possible punishment with uncertainty). Theorem 2 can be readily

extended using the same approach.

Theorem 3. For i = 1, 2, every ε > 0 and every (v1, v2) ∈ V ∗minimax, there exists an

equilibrium such that, if (v1, v2) is feasible, then player i’s average payoff is within ε of vi

when T is sufficiently large.

Proof. Fix T − t∗ ∈ N+. Find integer k such that for any (v1, v2) ∈ V ∗minimax, there

exists (v′1, v
′
2) ∈ V ∗minimax such that (v′1, v

′
2) is (strictly) within ε of (v1, v2) and that

min{v′1, v′2} ≥ ε
k
. For any (v1, v2) ∈ V ∗minimax, let (a1, a2) be an action profile such that

gi(a1, a2) = v′i for i = 1, 2.

Next, similar to the proof of Theorem 1, we propose the following strategy profile

and associated belief updating rule, denoted as σ
(v1,v2)
minimax, and prove that they form an

equilibrium where player i’s average payoff is within ε of vi.

1. In period 1 and 2, both players’ strategy are the same as σ
(v1,v2)
Nash .
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2. In period t > 2, if either player has played aD before, play aD. Otherwise, follow

the strategy described in 4-7 below.

3. In period t ∈ {2, · · · , t∗ − t̂ − 1} for some integer t∗ ∈ (1, T ) and some integer

t̂ ∈ (0, t∗− 1), if there was no deviation from 1, then (1) if player 2 played a(A) for

some A ∈ A(v1, v2) in period 2 and the players have played only av(A) in periods

t− t̂, · · · , t− 1, the players play av(A); (2) if player 2 played a(0) in period 2, the

players play (a(0), a(0)). Otherwise, if there was a deviation from 1 which can be

publicly identified, the players play:

– a. When a deviation from (a1, a2) occurs, enter the punishment phase from

the next period: play aminimax for t̂ periods.

– b. If no player deviated in the punishment phase, switch back to playing ai

(or a(0) if ai is not available) when the punishment phase is over.

– c. Restart the punishment phase if any player deviates from aminimax.

4. In period t ∈ {t∗− t̂, · · · , t∗−1}: if no punishment phase has started or restarted

within t̂− 1 periods, then play a(0). Otherwise:

– a. If no player has deviated from aminimax in periods t∗ − t̂, · · · , t − 1, then

play aminimax.

– b. Otherwise, play a(0).

5. In period {t∗, · · · , T − 1}: if no punishment phase has started or restarted at or

after period t∗−2t̂+1, or no player has deviated from aminimax within a punishment

phase in periods t∗ − t̂, · · · , t∗ − 1, then play a(0). Otherwise, if (λDi,t, λ
D
j,t) = (λ, λ),

play aD if available and a(λ) if not; if (λDi,t, λ
D
j,t) = (0, 0), play a(0).

6. In period T : player aD if available, otherwise, play a(λ) if (λDi,T , λ
D
j,T ) = (λ, λ),

and play a(0) if (λDi,T , λ
D
j,T ) = (0, 0).

7. The belief updating rule is analogous to that in Section 3.1.

Again, we categorize possible histories of play and identifies the conditions under

which σ
(v1,v2)
minimax is optimal for each player, we show that these conditions are captured by

Assumption 1.

Step 1. We begin with histories where at least one deviation from σ
(v1,v2)
minimax has

occurred.

Step 1.1. For t ∈ {2, · · · , T}, aD has occurred before. Following step 1.1 in the

proof of Theorem 1, playing aD is optimal for each player.
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Step 1.2. For t ∈ {t∗, · · · , T}, aD has not occurred before. Following step 1.2 in

the proof of Theorem 1, σ
(a1,a2)
minimax is optimal for each player.

Step 1.3. For t ∈ {t∗ − t̂, · · · , t∗ − 1}, aD has not occurred before. The players’

beliefs remain at λDi,t = λDj,t = λ. There are three possible scenarios:

– a. Some player has deviated from a punishment phase in periods t∗− t̂, · · · , t−
1. For player i, playing a(0) clearly dominates every other action in A\{aD}
regardless of her type. If i can play aD, playing a(0) dominates playing aD if

(t∗ − t)g1(a(0), a(0)) + λg1(aD, aD) + (1− λ)g1(aD, a(λ)) + (T − t∗)g1(aD, aD)

≥g1(aD, a(0)) + (T − t)g1(aD, aD).

The above condition holds for every t ∈ {t∗ − t̂, · · · , t∗ − 1} if

g1(a(0), a(0)) + (1− λ)g1(aD, a(λ)) ≥ g1(aD, a(0)) + (1− λ)g1(aD, aD). (13)

– b. No player has deviated from a punishment phase in periods t∗− t̂, · · · , t−1,

and the game is in a punishment phase according to σ
(a1,a2)
minimax. Suppose that

the punishment phase has t′ ≤ t∗−t periods left, including period t. For player

i, playing aminimax dominates every other action in A\{aD} if

t′gminimax + (T − t− t′)g1(a(0), a(0)) + λg1(a(λ), aD) + (1− λ)g1(a(λ), a(λ))

≥0 + (t∗ − 1− t)g1(a(0), a(0)) + λg1(a(λ), aD)

+ (1− λ)g1(a(λ), a(λ)) + (T − t∗)g1(aD, aD).

The above condition holds for every t ∈ {t∗ − t̂, · · · , t∗ − 1} if

t̂gminimax + (T − t∗)g1(a(0), a(0)) ≥ 0 + (t̂− 1)g1(a(0), a(0)) + (T − t∗)g1(aD, aD).

A further sufficient condition is

t̂gminimax + g1(a(0), a(0)) ≥ 0 + (t̂− 1)g1(a(0), a(0)) + g1(aD, aD). (14)

If i can play aD, playing aminimax also dominates aD if

t′gminimax + (T − t− t′)g1(a(0), a(0)) + λg1(aD, aD) + (1− λ)g1(aD, a(λ))

≥gmax + (T − t)g1(aD, aD).

Here we relax the payoff of playing aD against aminimax to gmax. The above
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condition holds for every t ∈ {t∗ − t̂, · · · , t∗ − 1} if

t̂gminimax + g1(a(0), a(0)) ≥ gmax + t̂g1(aD, aD). (15)

– c. No player has deviated from a punishment phase in periods t∗− t̂, · · · , t−1,

and the game is not in a punishment phase according to σ
(a1,a2)
minimax. For player

i, playing a(0) clearly dominates every other action in A\{aD} regardless of

her type. If i can play aD, a(0) also dominates aD if

(T − t)g1(a(0), a(0)) + λg1(aD, aD) + (1− λ)g1(aD, a(λ))

≥g1(aD, a(0)) + (T − t)g1(aD, aD).

The above condition holds for every t ∈ {t∗ − t̂, · · · , t∗ − 1} if

(T − t∗ + 1)g1(a(0), a(0)) ≥ g1(aD, a(0)) + (T − t∗)g1(aD, aD).

A further sufficient condition is

2g1(a(0), a(0)) ≥ g1(M,a(0)) + g1(M,M). (16)

Step 1.4. For t ∈ {2, · · · , t∗ − t̂ − 1}, aD has not occurred before. The players’

beliefs remain at λDi,t = λDj,t = λ. There are two possible scenarios:

– a. The game is not in a punishment phase. If t ≤ t∗ − 2t̂− 1, i weakly prefers

playing ai to every other action in A\{aD} if

(t∗ − t̂− t)v′i + (T − t∗ + t̂)g1(a(0), a(0))

≥gmax + t̂gminimax + (t∗ − 2t̂− t− 1)v′i + (T − t∗ + t̂)g1(a(0), a(0)).

Here we relax the payoff from deviation in the current period to gmax. The

above condition can be simplified as

(t̂+ 1)v′i ≥ gmax + t̂gminimax. (17)

If i can play aD, she weakly prefers playing aminimax to playing aD if

(t∗ − t̂− t)v′i + (T − t∗ + t̂)g1(a(0), a(0)) + λg1(aD, aD) + (1− λ)g1(aD, a(λ))

≥gmax + (T − t)g1(aD, aD).
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The above condition holds for every t ≤ t∗ − 2t̂− 1 if

v′i + (T − t∗ + t̂)g1(a(0), a(0)) ≥ gmax + (T − t∗ + t̂)g1(aD, aD). (18)

If t > t∗ − 2t̂− 1, i weakly prefers playing ai to every other action in A\{aD}
if

(t∗ − t̂− t)v′i + (T − t∗ + t̂)g1(a(0), a(0))

≥gmax + t̂gminimax + (T − t− t̂− 1)g1(a(0), a(0)).

The above condition holds for every t > t∗ − 2t̂− 1 if

g1(a(0), a(0)) ≥ gmax + t̂gminimax. (19)

If i can play aD, she weakly prefers playing ai to playing aD if

(t∗ − t̂− t)v′i + (T − t∗ + t̂)g1(a(0), a(0)) + λg1(aD, aD) + (1− λ)g1(aD, a(λ))

≥gmax + (T − t)g1(aD, aD).

The above condition holds for every t > t∗ − 2t̂− 1 given (18).

– b. The game is in a punishment phase. Let t′ ≤ t̂ denote the number of

remaining periods (including period t) of the punishment phase. If t ≤ t∗ −
2t̂− 1, which implies that t′ < t∗ − t̂− t, i weakly prefers playing aminimax to

every other action in A\{aD} if

t′gminimax + (t∗ − t̂− t− t′)v′i + (T − t∗ + t̂)g1(a(0), a(0))

≥0 + t̂gminimax + (t∗ − 2t̂− t− 1)vi + (T − t∗ + t̂)g1(a(0), a(0)).

The above condition can be simplified as

(t̂− t′ + 1)v′i ≥ (t̂− t′)gminimax,

which holds for every t ≤ t∗ − 2t̂− 1 and t′ ≤ t̂. If i can play aD, she weakly

prefers playing aminimax to playing aD if

t′gminimax + (t∗ − t̂− t− t′)v′i + (T − t∗ + t̂)g1(a(0), a(0))

+ λg1(aD, aD) + (1− λ)g1(aD, a(λ))

≥gmax + (T − t)g1(aD, aD).

Here we relax the payoff from deviation in the current period to be gmax. The
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above condition holds for every t ≤ t∗ − 2t̂− 1 and t′ ≤ t̂ if

t̂gminimax ≥ gmax + (T − t∗ + t̂)g1(aD, aD). (20)

If t∗− 2t̂− 1 < t ≤ t∗− t̂− t′, i weakly prefers playing aminimax to every other

action in A\{aD} if

t′gminimax + (t∗ − t̂− t− t′)v′i + (T − t∗ + t̂)g1(a(0), a(0))

≥0 + t̂gminimax + (T − t− t̂− 1)g1(a(0), a(0)).

The above condition can be simplified as

(t∗ − t̂− t− t′)v′i + (2t̂+ t+ 1− t∗)g1(a(0), a(0)) ≥ (t̂− t′)gminimax,

which holds for every t ∈ (t∗ − 2t̂− 1, t∗ − t̂− t′) and t′ ≤ t̂. If i can play aD,

she weakly prefers playing aminimax to playing aD if (20) holds.

If t > t∗ − t̂ − t′, i weakly prefers playing aminimax to every other action in

A\{aD} if

t′gminimax + (T − t− t′)g1(a(0), a(0)) ≥ 0 + t̂gminimax + (T − t− t̂− 1)g1(a(0), a(0)).

The above condition can be simplified as

(t̂+ 1− t′)g1(a(0), a(0)) ≥ (t̂− t′)gminimax,

which holds for every t > t∗ − t̂ − t′ and t′ ≤ t̂. If i can play aD, she weakly

prefers playing aminimax to playing aD if

t′gminimax + (T − t− t′)g1(a(0), a(0)) + λg1(aD, aD) + (1− λ)g1(aD, a(λ))

≥gmax + (T − t)g1(aD, aD).

The above condition holds for every t > t∗ − t̂− t′ and t′ ≤ t̂ if (20) holds.

Next, we consider histories that have not deviated from σ
(a1,a2)
minimax.

Step 2.1. t = T . Following step 2.1 in the proof of Theorem 1, σ
(a1,a2)
minimax is optimal

for each player.

Step 2.2. t ∈ {t∗, · · · , T}. Following step 2.2 in the proof of Theorem 1, σ
(a1,a2)
minimax is

optimal for each player.

Step 2.3. t ∈ {t∗ − t̂, · · · , t∗ − 1}. Apply step 1.3(c), and σ
(a1,a2)
minimax is optimal for

each player given the corresponding conditions.
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Step 2.4. t ∈ {3, · · · , t∗ − t̂ − 1}. Apply step 1.4(a), and σ
(a1,a2)
minimax is optimal for

each player given the corresponding conditions.

Step 2.5. t ∈ {1, 2}. Following step 2.4 and 2.5 in the proof of Theorem 1, σ
(a1,a2)
minimax

is optimal for each player.

The set of sufficient conditions for σ
(a1,a2)
minimax to be an equilibrium is (13)-(20). Since

v′i ≥ ε
k

by construction and gminimax is fixed and negative, we can now find t̂ ∈ N+ so

that (17) and (19) are satisfied. Fix one such t̂, it is clear that (13)-(16), (18) and (20)

are satisfied when g1(aD, aD) is sufficiently small. Hence similar to the proof of Theorem

1, we can find a sufficiently small number ĝ ∈ R− and a sufficiently large number g̃ ∈ R+

such that σ
(a1,a2)
minimax is an equilibrium. This completes the proof.
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